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A B S T R A C T

The aim of the study was to test the cross-language generative capability of a model that predicts neural
activation patterns evoked by sentence reading, based on a semantic characterization of the sentence. In a
previous study on English monolingual speakers (Wang et al., submitted), a computational model performed a
mapping from a set of 42 concept-level semantic features (Neurally Plausible Semantic Features, NPSFs) as well
as 6 thematic role markers to neural activation patterns (assessed with fMRI), to predict activation levels in a
network of brain locations. The model used two types of information gained from the English-based fMRI data
to predict the activation for individual sentences in Portuguese. First, it used the mapping weights from NPSFs
to voxel activation levels derived from the model for English reading. Second, the brain locations for which the
activation levels were predicted were derived from a factor analysis of the brain activation patterns during
English reading. These meta-language locations were defined by the clusters of voxels with high loadings on
each of the four main dimensions (factors), namely people, places, actions and feelings, underlying the neural
representations of the stimulus sentences.

This cross-language model succeeded in predicting the brain activation patterns associated with the reading
of 60 individual Portuguese sentences that were entirely new to the model, attaining accuracies reliably above
chance level. The prediction accuracy was not affected by whether the Portuguese speaker was monolingual or
Portuguese-English bilingual. The model's confusion errors indicated an accurate capture of the events or states
described in the sentence at a conceptual level. Overall, the cross-language predictive capability of the model
demonstrates the neural commonality between speakers of different languages in the representations of
everyday events and states, and provides an initial characterization of the common meta-language neural basis.

1. Introduction

1.1. Exploring the commonality of neural representations of
sentences across languages

One of the new insights emerging about human brain function since
the advent of fMRI is that individual concepts have identifiable neural
signatures (Mitchell et al., 2008), and furthermore, that there is a high
degree of commonality of such signatures across people (Just et al.,
2010). Particularly germane to this study are previous investigations of
the commonality of neural representations of concepts across different
languages. For example, Buchweitz et al. (2012) demonstrated the
commonality of the neural representations of 14 concrete objects (7
tools and 7 dwellings) across English and Portuguese. More recently

Correia et al. (2014) demonstrated the commonality of the neural
representations of 7 concrete objects (4 animals and 4 inanimate
objects) across Dutch and English, while Zinszer et al. (2016) did so for
8 concrete objects across Mandarin Chinese and English. At least at the
level of individual common concrete lexical items, the neural repre-
sentations are to a large degree common across languages.

The goal of the current study was to assess the commonality across
two languages of the neural representation of sentences, using a much
larger vocabulary, and at the same time increasing the granularity of
the scientific account of the phenomenon. The study developed a
predictive model that learns the mediated mapping between semantic
features of 96 word concepts (content words) and the resulting
activation pattern of 60 sentences composed from these words in one
language, and predicts the activation pattern of a new sentence

http://dx.doi.org/10.1016/j.neuroimage.2016.10.029
Received 13 May 2016; Accepted 18 October 2016

⁎ Corresponding author.
E-mail address: just@cmu.edu (M.A. Just).

NeuroImage 146 (2017) 658–666

Available online 19 October 2016
1053-8119/ © 2016 Elsevier Inc. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
http://dx.doi.org/10.1016/j.neuroimage.2016.10.029
http://dx.doi.org/10.1016/j.neuroimage.2016.10.029
http://dx.doi.org/10.1016/j.neuroimage.2016.10.029
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2016.10.029&domain=pdf


composed of new words (new to the model) in another language. (The
96 concepts consist of 58 nouns, 23 verbs, and 15 adjectives. The
sentences each contain a mean of 3.2 content words).

Two very recent advances in the areas of neural modeling and brain
reading provide the foundation for the current work. First, it has been
possible to develop predictive models, rather than merely discrimina-
tive models, of the neural representations of concepts (Just et al., 2010;
Mitchell et al., 2008). Discriminative models simply provide a mapping
between stimulus items and brain activation patterns. Predictive or
generative models, on the other hand, specify the principles or
intervening variables that mediate this mapping, making it possible
to predict the activation pattern for a new item. Thus the current study
starts with a mapping between the semantic properties of word
concepts and their neural representations developed from the data of

English speakers reading English sentences, and then uses this
mapping to predict the neural representation of a new word concept
(new to the model) in Portuguese.

The second advance is that brain reading studies have progressed
from decoding individual concepts from their fMRI signature to
decoding entire sentences and narratives using predictive models
(Huth et al., 2016; Wang et al., submitted). The neural representation
of a sentence is construed here as the sum of the neural representations
of its component content words, plus these words’ thematic roles in the
sentence. Taking the word concepts’ thematic role in a given sentence
into account characterizes some of the sentence-level meaning above
the level of individual words. This construal is still an oversimplifica-
tion of the nature of sentence meaning, which can additionally contain
meaning elements that emerge from the contextual interaction of the

Fig. 1. Illustration of the mappings between neural activation patterns and semantic representations. (A) Brain regions associated with the four semantic factors: people (yellow),
places (red), actions (blue) and feelings (green). (B) Word clouds associated with each factor. The clouds are formed using the 7 NPSFs most associated with each factor to illustrate
the meaning components of each factor. (C) NPSFs that correlate with at least one factor with r > 0.3 (p < 0.0001). The pairwise correlations are computed between each NPSF's coding
over the individual words and the factor scores over the same words. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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component words in a given syntactic configuration.

1.2. A generative mapping between word concepts and fMRI
activation patterns

The type of generative mapping between word concepts and fMRI
activation patterns used here requires a mediating layer of semantic
elements that characterize word concepts. The semantic characteriza-
tion of concepts was a set of 42 Neurally Plausible Semantic Features
(NPSFs) that had been previously developed (Wang et al., submitted)
to code the meanings of 242 content word concepts in 240 English
stimulus sentences, 195 of which described an everyday event (e.g. The
woman left the restaurant after the storm) and 45 of which described
a state (e.g. The flower was yellow). These 240 sentences constitute a
superset of the 60 sentences in the current study.

These NPSFs are hypothesized to encode semantic features that are
common across word concepts, and have been shown in previous
research to have neural bases that are common across people. For
example, previous neuroimaging studies have found the neural bases of
NPSFs such as animals (e.g. Martin et al., 1996), concrete objects (Just
et al., 2010), social interactions (e.g. Just et al., 2014; Rilling et al.,
2004; Schilbach, 2015; Schilbach et al., 2006; Van der Cruyssen et al.,
2015), shelter (e.g. Huth et al., 2012; Just et al., 2010; Rustandi et al.,
2009), tools (e.g. Johnson-Frey, 2004; Martin et al., 1996; Tranel et al.,
2003), eating/drinking (e.g. Giuliani et al., 2014; Van der Laan et al.,
2011), emotions (Kassam et al., 2013), and so on. (See Table S.1. in the
Supplemental materials for a complete list of the NPSFs and the coding
of some sample concepts).

Furthermore, the activation patterns corresponding to some of
these NPSFs are largely similar across speakers of different languages
(e.g. Zinszer et al., 2016) and among bilinguals and monolinguals (e.g.
Kovelman et al., 2008; Palomar-García et al., 2015). Thus, NPSFs are
hypothesized to be implemented at the level of the “language of
thought” (Fodor and Pylyshyn, 1988; Marcus et al., 2014). We used
these 42 NPSFs, developed to code the semantic properties of English
words, testing their ability to generate accurate predictions concerning
the neural representations of words in Portuguese. Notably, when the
model generates the predicted activation pattern of a given Portuguese
word, the model's training set from the English data excludes any
information about the activation of the English translation equivalent
of that Portuguese word. The prediction instead is based on the NPSFs
of the Portuguese word, and how the NPSFs were related to activation
patterns as they occurred in other words.

This modeling approach requires a specification of the brain areas
where the mapping between NPSFs and activation patterns is imple-
mented. These locations were derived from a factor analysis of the
fMRI data of three English monolingual speakers in the previous study
of 240 English sentences whose neural representations were particu-
larly identifiable and similar to each other. More specifically, hierarch-
ical factor analyses were applied to the datasets from these three
English monolingual speakers to reduce the dimensionality of their
data, uncovering the shared underlying semantic dimensions at a
coarser level than NPSFs, and localizing each of these dimensions to
a set of brain locations (implemented as voxel clusters, with locations
shown in Table S.2. in the Supplemental materials). The factor analyses
yielded four such dimensions and their associated brain locations, as
illustrated in Fig. 1A and B. Specifically, the main underlying dimen-
sions can be characterized as: (1) people; (2) places; (3) actions; and
(4) feelings. These four labels each refer to a broad set of concepts, such
as people referring to social interactions, human knowledge, commu-
nication, etc., some of which are indicated in the word clouds in
Fig. 1B. A set of 2–15 brain locations was associated with each of the
four underlying dimensions (clusters larger than 10 voxels associated
with each factor are shown in Fig. 1A).

The correlation between NPSFs and these four basic dimensions
can be assessed by relating the profile of a given factor's scores over

individual stimulus words to the NPSF coding profile over these words.
For example, the NPSF communication was associated with the factor
people, as they both showed high scores for concepts such as negotiate
and speak. Another example comes from the factor of places: the words
restaurant, hospital and car all had high scores on this factor, and
these words were coded with the NPSF shelter. Therefore, the NPSF
shelter is correlated with the neural dimension of place, as indicated in
Fig. 1C. Specifically, the 8 brain locations shown in yellow in Fig. 1A
correspond to the people dimension in Fig. 1B, which is correlated with
NPSFs like communication in 1C, and the 8 brain locations shown in
red correspond to the place dimension in Fig. 1B, which is correlated
with NPSFs like shelter in 1C. In sum, the factor analysis indicates the
basic underlying dimensions, and the locations of voxel clusters with
high loadings on these factors, and these locations are then used for
mapping between NPSFs and activation levels in Portuguese.

1.3. A meta-language sentence prediction model

If the mapping between semantics and brain activation indeed has
commonality across languages, then a predictive model should be able
to learn a mapping between the semantic characterization and activa-
tion patterns in one language (English, in this case), and predict the
activation patterns in another language, namely Portuguese.

To test this hypothesis, 60 arbitrarily selected sentences from the
set of the 240 English sentences were translated into Brazilian
Portuguese by two native speakers, to be used as stimuli for
Portuguese speakers.

The mapping between NPSFs and activation in a given voxel
location, expressed as model weights, were learned from the data of
seven English monolingual speakers. The model weights computation-
ally defined the mapping from NPSFs (and the thematic roles) of the
content words in the sentences to the fMRI-measured neural activation
in the factor-related locations (Wang et al., submitted). In the current
study, these weights were used to predict the neural activation patterns
of new words in new sentences as read by Portuguese speakers. Then,
the predicted activation patterns of each of the individual content
words of the sentence were added to produce predicted activation
patterns of the entire sentence. This procedure has generated highly
accurate predictions in the previous sentence decoding experiment on
seven English monolingual speakers (mean rank sentence prediction
accuracy=0.82, critical level at p < 0.05=0.54. obtained with random
permutation testing).

The stimulus sentences in this study described everyday, concrete
events and objects (as shown in Table S.3) making them unsuitable for
addressing issues of cultural or environmental influences on neural
representations of concepts and sentences. Cultural effects on neural
activation patterns have been reported in several domains that
intuitively seem sensitive to culture, such as self-representation (Zhu
et al., 2007). Any conclusions regarding cross-language commonality
based on the materials of the current study will be limited to sentences
that describe relatively culture-free events and objects.

1.4. Hypotheses

Using the same brain locations, NPSFs, and trained model weights
developed in the previous English sentence study (Wang et al., sub-
mitted), the following hypotheses were tested.

The main hypothesis is that the mapping between the sentence
characterizing NPSFs/thematic roles and activation patterns in specific
brain locations in English is above the level of an individual language
and should predict the activation patterns associated with the reading
of individual Portuguese sentences. This hypothesis also entails that
there is a commonality across people, given that there is no overlap
between the participants in the study of English reading and
Portuguese reading.

Second, the cross-language prediction accuracy should be similar in
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bilingual and monolingual participants, because the model is con-
structed at a conceptual level common between languages. Even though
the model is based on data from English speakers, knowledge of
English should not be relevant to prediction accuracy.

Additionally, the model should capture the mapping between
activation and the gist of the sentence, rather than any superficial
properties of the sentences. Thus the model's highly-ranked but
incorrect sentence guesses should resemble the correct sentence in
terms of the events or states they describe.

2. Material and methods

2.1. Participants

Fifteen native Brazilian Portuguese speakers participated and gave
signed informed consent approved by the Carnegie Mellon University
Institutional Review Board (IRB protocol HS14-474). Eight were
Portuguese-English late bilinguals with high proficiency in L2
(English), all right-handed (5 females, 3 males), mean age 27.5 years
(SD=2.3). Seven were Portuguese monolinguals, all right-handed (4
females, 3 males), mean age 28.7 years (SD=5.3).

The Portuguese-English bilingual participants were enrolled in or
graduated from US universities as graduate or undergraduate students
at the time of data collection. All the bilingual participants had been
living in the U.S. for a mean of 2.02 years (SD=2.35), and all reported
spending most of the day using English (6–12 h). The mean age of
these bilinguals starting to learn English was 12.9 years (SD=4.7), and
all had formal instruction in a school setting. To assess their reading
proficiency, we adapted the reading section of a TOEFL test available
online, and the Portuguese-English bilingual participants displayed
high proficiency with a mean of 8.53 out of 10 (SD=1.16). (Note that
the TOEFL reading comprehension test uses more complex sentences
than our sentence stimuli.) A portion of the adapted TOEFL test
administered to the Portuguese-English bilingual participants is shown
in the Supplemental materials.

2.2. Experimental paradigm

Participants read 60 sentences in Portuguese while fMRI data were
acquired. These Portuguese sentences were translation-equivalents of a
subset of 240 English sentences (developed by Glasgow et al., 2016)
used in a previous investigation (Wang et al., submitted). The fidelity of
the translations was confirmed by back-translation and consultation
among 4 advanced Portuguese/English Language scholars. The sen-
tences obeyed subject-verb order, were in the active voice, and had a
mean length of 3.2 content words. The sentences are shown in
Supplemental materials (Table S.3). Of these 60 sentences, 49 de-
scribed events (e.g. O diplomata negociou na embaixada /The
diplomat negotiated at the embassy) and 11 described states (e.g. A
revista era amarela / The magazine was yellow).

The sentences were presented one phrase at a time (e.g. A família/
estava/feliz –The family/was/happy) in a moving left-to-right win-
dow, as shown in Fig. 2. The duration of each phrase presentation was
determined by an estimation formula: 300 ms×number of content
words+16 ms×number of characters, where the number of characters
includes all words except the). Phrases that contained adjectives that
were followed by a noun remained on the screen until the noun
disappeared. This display protocol (as opposed to presenting one word
at a time or one sentence at a time) was adopted to approximate the
type of encoding that is indicated by eye fixation studies of text reading
(Just and Carpenter, 1980; Schuster et al., 2016). For example, during
natural reading, it is rare for a reader to make separate eye fixations on
the article the, so it was presented at the same time as the rest of its
noun phrase. Furthermore, the presentation time for each phrase was
also consistent with such studies that measured gaze durations on
individual words in a text. In addition, because the hemodynamic

BOLD response in fMRI convolves the responses to temporally
adjacent events, it is difficult to separate the responses to the article
the and the noun it modifies. Thus, there is little loss of information in
the fMRI signal if a simple phrase is presented in its entirety.

At the end of the sentence, a blank interval padded out the total
presentation duration to 5 s. Participants were instructed to pay
attention to the meaning of each phrase as it appeared by thinking
about the properties of the concepts the phrase referred to. As each
phrase of the sentence appeared, they were to integrate their concep-
tion of the phrase into their conception of the emerging sentence.
During the blank interval, participants were instructed to continue
thinking about the sentence, integrating the meaning of all the words.
After the blank interval, a centered fixation cross appeared for 7 s
during which participants were instructed to fixate and clear their
minds.

The entire scanning session lasted one hour. Each of the 60
sentences was presented four times in four separate blocks in a
randomized order. There were sixteen additional fixation or rest
periods, 17 s each, distributed across the session, to provide a baseline
measure of activation.

To assess the participants’ attention to the task, they were given a
sentence recognition test after the scan, consisting of 30 sentences that
had been presented in the task (old) and 30 that were new. The
resulting mean recognition accuracy was 95.4%.

2.3. fMRI acquisition and analysis

Functional images were acquired on a Siemens Verio 3.0T scanner
at the Scientific Imaging & Brain Research Center (SIBR) of Carnegie
Mellon University (gradient echo EPI pulse sequence; TR=1000 ms,
TE=30 ms, and a 60° flip angle). Twenty 5-mm thick AC-PC aligned
slices were imaged (1-mm gap between slices). The acquisition matrix

Fig. 2. Schematic representation of the experimental paradigm. Presentation of a
sample sentence: A familia estava feliz (The family was happy). The duration of each
phrase presentation was determined by a formula derived from eye movement studies of
text reading (Just and Carpenter, 1980), namely 300 ms×number of content words
+16 ms×number of characters, where the number of characters includes all words except
the).
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was 64×64 with 3.125×3.125×5-mm voxels.
The data were realigned and normalized to the Montreal

Neurological Institute (MNI) template using SPM8 (http://www.fil.
ion.ucl.ac.uk/spm/). For each presentation of a sentence, the percent
signal change (PSC) was computed at each voxel, relative to the mean
baseline activation level measured during fixation intervals.

Each sentence MPSC (mean PSC) image was measured as the mean
of five PSC images, collected from 7 s to 11 s after sentence onset (one
image per TR, each TR=1 s). This temporal window was determined by
a preliminary investigation, which found that the most decodable
neural signatures of all the content words in a simple sentence
presented at normal reading speed occurred after the entire sentence
had been read (Wang et al., submitted). The MPSC image was then
normalized to mean of 0 and variance of 1 across sentences within each
block of scans (presentations), to equate the overall intensities in each
block. This procedure yielded a normalized MPSC image for each
presentation of each sentence.

2.4. Neurally Plausible Semantic Features (NPSF) and thematic roles
as word-level semantic features

The words of the sentences were characterized in terms of Neurally
Plausible Semantic Features (NPSFs) and their thematic role in the
sentence. These characterizations were identical for the English and
Portuguese versions of the sentences. There were 42 binary NPSFs,
such as communication, shelter, impact, and emotion as illustrated in
Fig. 1C and described more completely in Table S.1. in Supplemental
materials. The coding was performed by a group of raters guided by
linguistic/semantic principles.

Six thematic role features for these simple sentence constructions
were also coded and used in the model training: agent, main verb,
predicate of copular sentence, patient, adjunct (most of which were
propositional phrases), and modifier. These 6 thematic role features
were conjoined with the 42 NPSFs to represent each word in a 48-long
vector array. Words that had different thematic roles in different
sentences were coded the same in the first 42 elements of this array
(the NPSFs) but differently in the last 6 elements (thematic roles).

2.5. Specification of brain locations

The brain locations used in the modeling were derived from a
hierarchical factor analyses (FA) of the fMRI sentence activation data
from three participants in the English monolingual study whose
activation patterns were most accurately predicted (Wang et al.,
submitted). The input to the first-level (i.e. individual participant level)
of the hierarchical FA were the 600 voxels that were the most stable
over all 240 sentences across four presentations in the data of each of
these three participants. The first level FA produced seven factors for
each participant. These first-level factors were then submitted to the
second between-participant level FA, resulting in four semantic factors
(plus a fifth perceptual factor pertaining to phrase length) common to
the three participants, explaining 37% of the variation. The locations
associated with the four semantic factors were obtained by clustering
the voxels with the highest factor loadings into 38 brain locations. The
clusters larger than 10 voxels are shown in Fig. 1. (All brain locations
and their MNI coordinates are listed in the Table S.2. in Supplemental
materials).

2.6. Sentence prediction model

The cross-language sentence model predicted the activation levels
of the most stable voxels within the meta-language brain locations,
shown in Fig. 1 and listed in Table S.2. Stable voxels were defined as
voxels having consistent activation responses over the four presenta-
tions of the training sentences. The voxels with the highest stability
within each brain location were selected. The numbers of voxels

selected from each brain location were based on the brain location
size: 5 for locations smaller than 50 voxels, 10 from locations of 50–
150 voxels, and 20 from locations of 150–300 voxels.

In each cross-validation fold, the MPSC image (averaged over 5 PSC
images from 7 s to 11 s post sentence onset) of one Portuguese
sentence (averaged over four presentations) from one individual
Portuguese speaker served as the test data. To obtain the weights from
the English fMRI dataset, the model was trained on the MPSC images
from four repetitions of a sentence (each averaged over 5 PSC images
from 7 s to 11 s post sentence onset) of seven English monolingual
speakers reading 240 sentences containing 242 words (Hastie et al.,
2005), but excluding any sentence that contained any English transla-
tion equivalents of the component words of the test Portuguese
sentence. These weights mapped between the 48 features (42 NPSFs
+6 thematic roles) and the activation levels of the most stable voxels in
the factor-related brain locations. Then these weights were applied the
set of features (NPSFs+thematic roles) for each of the words of the
Portuguese test sentence (that were new to the model), to predict their
activation patterns. The predicted word images were then added
together to compose the predicted sentence activation image for the
Portuguese test sentence. The predicted activation patterns for the
other 59 Portuguese sentences were similarly generated. To assess the
accuracy of the sentence activation predictions, the similarity (cosine
distance) between the actual left-out sentence image and all sixty
predicted images was computed, and these predictions were rank
ordered by their similarity to the actual left-out test sentence image.
The rank accuracy of the prediction was computed as the normalized
rank of its similarity to the actual target sentence in the list of 60
guesses.

3. Results

When the model weights and brain locations obtained from English
monolingual participants’ data were applied to the data of the 15
Portuguese participants, the mean rank accuracy of predicting the
activation pattern of each of the 60 Portuguese sentences was .67
(SD=.07), and reliably above chance (p < 0.001, p value estimated by a
5000-iteration random permutation). Furthermore, the rank accura-
cies were significantly above chance for all but one of the participants
(rank accuracies≥.56, p < 0.05). The mean prediction accuracies for
sentences describing events and states were very similar (.68 and .67
respectively), and no significant difference was found between these
two types of sentences. Thus the mapping developed in English is
predictive of the activation evoked during the reading of Portuguese
sentences, indicating both cross-language and cross – participant
commonality of neural representations.

The detail of the model's functioning can be illustrated with an
example, the sentence O eleitor foi ao protesto (The voter went to the
protest). The actual observed image (the MPSC image averaged over
participants) for this sentence is shown in the top row of Fig. 3, and the
predicted image for the same sentence (using English-based weights) is
shown in the bottom row. The three content words of this sentence
(voter, went, protest) were coded with NPSFs such as “Governance”,
“Person”, “Change of Location”, “Social Interaction”, “High affective
Arousal”, etc. These NPSFs are associated with high activation levels in
areas such as left superior and middle frontal gyri, left middle temporal
area, precuneus, and right temporoparietal junction. The observed and
predicted images show this generally similar pattern, indicating that
the generative model indeed captured the mapping between the
semantics of the sentence and a specific neural activation pattern.

3.1. Confusion errors of the model reflect its semantic integrity

An additional way of assessing the degree to which the model was
capturing the sentences’ gist was to examine the types of events
described by the model's highly ranked but incorrect sentences. We
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focused on those items for which the predictive model's highest ranked
sentence was the correct one, which represent cases of modeling
success. The goal was to informally assess how similar the next few
highest ranking sentences were to the correct sentence.

Some examples of such top ranked sentences are shown in Table 1.
In these cases the mapping also assigned high ranks to other sentences
that described similar events or situations. These runners-up came
from the same semantic cohort as the target. That is, the runner-up
sentences are similar in terms of the type of events they describe. This
systematic semantic similarity of the runners-up indicates that the
generative model captures the gist of the target stimulus sentence. This
observation in turn suggests that events of a similar type have similar
neural representations.

3.2. Thematic roles code sentence-level meaning

The predicted activation pattern of a sentence was generated by
adding together the predicted activations of its component words, as

well as taking those words’ thematic roles into account (i.e. the same
word with different thematic roles was modeled as different entities).
The thematic roles encode a level of sentence meaning above individual
words. Whether this level of sentence meaning contributed to the
prediction accuracy was assessed by comparing models with and
without thematic roles. The model that included thematic roles
resulted in reliably higher accuracy (.67 vs 0.62) than the model
without thematic roles t (13)=3.14, (p < 0.01), indicating that inclusion
of thematic roles captures a significant portion of the activation
variance associated with sentence-level meaning representations. This
approach is still an oversimplification of the nature of sentence
meaning. There are likely to be additional sentence-level elements of
meaning that emerge from the sentence as a whole, which are beyond
the scope of the current model. Nevertheless, even without such
postulated higher levels of meaning, the current model captures a
significant amount of the systematicity in the fMRI data for the 60
sentences under investigation.

4. Additional models and analyses

4.1. Bilingual versus monolingual participants

To determine whether knowledge of a second language (English)
impacted the prediction accuracy of the cross-language model, this
accuracy was computed separately for the bilingual and monolingual
participants. The mean rank accuracy for the two groups was very
similar: for bilingual participants, it was .66 (SD=.07) and for mono-
lingual participants, it was .67 (SD=.05) (t (13)=0.34, n.s). This result
indicates that knowledge of English was neither essential nor helpful
for producing accurate predictions. Thus the ability to predict sentence
activation patterns in bilingual participants was apparently not due to
them internally translating the sentences into English and thus
conforming to the English-based weights and locations.

4.2. Activation prediction for Portuguese test sentences using data
from both English and Portuguese sentences

The main model was trained only on data from English sentences. It
is interesting to consider whether a model would make reliably more

Fig. 3. Comparison of the neural activation patterns (in only the selected voxels) between the observed image evoked by the sentence O eleitor foi ao protesto (The voter went to the
protest), and the predicted image of the sentence using weights from the English-based fMRI data. Both images are the MPSC images averaged across participants and normalized to
values of 0–1.

Table 1
The top five ranked sentences from the generative model in a subset of perfectly
predicted sentences. The top five guesses are shown in English translation. In addition to
the correct guess of the stimulus sentence at the top, the following four runners-up were
also semantically similar to the target. This systematic runners-up cohort pattern
indicates that the generative model captured the gist of the target stimulus sentence.

Target sentence Os pais visitaram a
escola

Target sentence A flor era amarela.

English
translation

The parent visited
the school

English
translation

The flower was
yellow

Top 5 predicted
sentences

The parent visited
the school.

Top 5 predicted
sentences

The flower was
yellow

The politician
visited the family

The magazine was
yellow

The happy couple
visited the embassy

The street was
dark

The parent bought
the magazine

The street was
empty at night

The family was
happy

The yellow bird
flew over the field
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accurate predictions if it were additionally trained on data from
Portuguese sentences (excluding sentences that contain any compo-
nent word of the test sentence). To assess this conjecture, an additional
model was trained on activation data from both languages. This
additional two-language model was trained on the averaged fMRI
images of seven English monolingual speakers and on the images of the
Portuguese speaker whose activation was being predicted (excluding
the test sentence and any other sentence containing any words from the
test sentence in both languages). The mean rank accuracy across 15
participants was .72, reliably higher (t (14)=3.28, p < 0.01) than the .67
accuracy of the main model. (Note that the two-language model was
given less information about the English activation (images for ~58–59
English sentences) than the main model (weights obtained from ~236
English sentences), with the same brain locations used in both cases,
and the two-language model nevertheless provided higher accuracy).
This analysis indicates that a predictive model is more accurate when
trained on the data from not just another language but also on data
from the target language. Nevertheless, the main conclusion of this
paper is that it is possible to train a model exclusively on data from one
language and make accurate activation predictions for another lan-
guage.

4.3. Activation prediction for Portuguese sentences using data only
from Portuguese sentences to derive model weights while still using
the brain locations derived from the English data

When the model weights were obtained by training on the data of
14 of the participants on sentences that did not contain any component
word from the one held-out test sentence, the mean rank accuracy for
predicting the left-out test sentence in the left-out 15th participant, was
.67 (SD=.05, p < 0.001). All the participants’ accuracies reached
significance (rank accuracy≥.56, p < 0.05). This mean accuracy is the
same as that of the main model that was based exclusively on English
data (but the main model was based on a larger amount of training
data). Thus training a model on the same language as the target
language does not substantially increase the prediction accuracy
compared to a cross-language model with more training data.

4.4. Activation prediction using random sets of brain locations

All of the models and analyses above made their predictions for the
brain locations derived from the factor analyses of the activation data
evoked by English sentences. A model using random locations was
developed to assess the contribution of using the factor-based brain
locations. The random locations model used 1000 sets of 38 random
brain volumes of the same sizes as the original set of brain locations.
This model used no data whatsoever from the English study, but
instead used data only from Portuguese sentences to derive model
weights. The model was trained and tested on the averaged MPSC
images averaged over the Portuguese participants.

In each of the 1000 permutation steps per sentence, the locations
(centroid coordinates) of each of the 38 volumes were randomly
selected (while retaining each volume's shape, and keeping them all
within the boundary of the brain, and disallowing overlaps between
volumes). In each permutation, the most stable voxels were selected
within these new volumes, and the numbers of voxels per volume were
determined as in the main model. This procedure was applied to
predict the activation of each of the 60 Portuguese sentences (based on
training data from the other 59 sentences).

The resulting mean prediction accuracy of the random locations
model was .53, reliably lower than the accuracy of .67 obtained by the
main model and using the original set of meta-language brain locations
(p < .001). The random locations model's accuracy was also reliably
lower than the accuracy of .67 obtained by the model above that used
data only from Portuguese sentences to derive model weights while still
using the brain locations derived from the English data. These results

indicate that the brain locations obtained from the English mono-
lingual speakers indeed encoded critical semantic information that is
common across languages.

4.5. Prediction accuracy for different parts of speech

The word prediction accuracies for three parts of speech (noun,
verb, adjective) were computed separately, producing means of .76,
.73, and .76, respectively, with no reliable differences among them (F
(2,108)=0.26, n.s.).

5. Discussion

5.1. Configurations of concept representations in sentences across
languages

The findings clearly showed that it is possible to predict the fMRI
activation patterns evoked by the reading of a sentence using a model
developed entirely in another language. Furthermore, the model's
confusion errors indicated that the prediction accuracy stemmed from
capturing the gist of the event or the state that the sentence described,
rather than any superficial properties.

Several assumptions were made in the cross-language sentence
prediction model: that NPSFs provide a basis for estimating the
activation patterns evoked by word-level semantic processing, and that
sentence activation is composed of both the word-level activation
patterns of the sentence's component words as well as activation
patterns corresponding to these words’ thematic roles.

Specifically, the NPSFs were construed as a set of implicit hypoth-
eses concerning some key modulators of neural activation patterns. By
using NPSFs as independent variables in the predictive model, we
hypothesized them to be critical elements in the neural processing of
word-based meaning representation. The key advantage of directly
implementing NPSFs in the prediction model lies in the direct
translation from basic neurolinguistic research to model development.
By contrast, semantic vector representations of concepts (e.g. Latent
Semantic Analysis, (Dumais, 2004)) have limited linguistic interpret-
ability, although the use of such representations has been shown to be
predictive of neural activation (e.g., Mitchell et al., 2008; Murphy et al.,
2012; Schloss and Li, 2016).

NPSFs enable an intuitive assessment of the mapping from words
of a given semantic class to activation patterns in a particular spatial
distribution. Collectively, the results indicate that the mapping between
NPSFs and neural activation patterns constitute a conceptually-based
model, superseding the language differences at the lexical and syntac-
tical levels.

To the best of our knowledge, all the cross-language neural
decoding and prediction studies to date (Buchweitz et al., 2012;
Correia et al., 2014; Zinszer et al., 2012), including the current study,
used stimuli that only covered a small semantic space, which is selected
to be simple, concrete and culturally similar. Whether the predictive
ability of this concept-based model can generalize to the other
uncovered domains of the vast human conceptual space requires
further research and model development.

5.2. The meta-language brain locations

Using the 38 brain locations derived from the fMRI factor analyses
of English monolingual speakers, the model succeeded in predicting
the activation patterns evoked by Portuguese sentences, using the
weights from either English speakers or other Portuguese speakers.
These locations collectively constitute a meta-language conceptual
brain network. Part of the universality of neural meaning representa-
tion can be attributed to the commonality of the neural infrastructure.
Our findings lead to the testable prediction that the model may be
extensible to concept prediction in other languages using similar brain
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locations in the meta-language conceptual brain network with the
ability to predict the activation of new sentences composed of new
words of the same general type.

The knowledge of this common neural network can (1) advance the
theories of the “language of thought”, and (2) open new doors for cross-
language and cross-modality decoding technologies for complex con-
ceptual constructs.

These 38 brain locations belong to a number of networks that are
relevant to semantic and conceptual processing. Some of them are
related to basic neural dimensions, such as those related to the people
dimension, including bilateral precuneus, bilateral middle temporal
gyrus, and bilateral superior frontal areas, and those related to the
place dimension, involving bilateral parahippocampal areas, bilateral
precuneus, and bilateral middle occipital areas. There are also areas
involved in sentence context processing, including semantic integration
(angular gyrus, middle temporal gyrus) (Moseley and Pulvermüller,
2014; Price et al., 2016), theory of mind (precuneus, posterior
cingulate cortex, bilateral prefrontal cortex) (Rilling et al., 2004), and
concept binding (left middle and superior temporal area) (Frankland
and Greene, 2015).

This study supports the hypothesis that the NPSFs or semantic
concepts central to human experience are encoded in common neural
areas across languages. The prediction model can bypass a language
difference by characterizing neural activation patterns within these
areas, and relating them to the corresponding elementary meaning
units (NPSFs) at the “language of thought” level.

5.3. Commonalities between bilinguals and monolinguals in semantic
representation

A few previous studies have demonstrated that bilinguals and
monolinguals recruit similar neural areas for language processing
(Kovelman et al., 2008; Proverbio et al., 2002). Although differences
in neural activation levels between monolinguals and bilinguals have
been demonstrated (Jones et al., 2011; Kovelman et al., 2008) due to
factors such as exposure, age, and proficiency (Bloch et al., 2009), a
common shared neural network has nonetheless repeatedly emerged
(Buchweitz and Prat, 2013; Buchweitz et al., 2012; Correia et al., 2014;
Kovelman et al., 2008).

This study further shows that similar neural activation patterns are
evoked by the processing of English and Portuguese translation-
equivalent sentences in both bilinguals and monolinguals. In other
words, the neural codes for representing concepts in simple literal
sentences are similar regardless of whether a person knows one
language or two. This finding is consistent with a number of studies
that compared activation patterns between monolinguals and bilin-
guals and found many commonalities and few differences between the
two groups (Isel et al., 2010; Palomar-García et al., 2015; Parker Jones
et al., 2012). At the same time, the findings do not imply that the neural
processing of concepts in the bilingual brain is identical to the
processing in the monolingual brain. For instance, previous studies
have shown that several language-related areas show higher activation
levels in bilinguals than monolinguals (Costa and Sebastián-Gallés,
2014; Parker Jones, et al. 2012), possibly due to the increased neural
processing demands in the bilingual brain due to the need to control
two languages (Costa and Sebastián-Gallés, 2014). Our study did not
compare activation levels per se across languages, but instead com-
pared patterns of activation levels across a set of voxels associated with
individual concepts and sentences.

Although the bilingual participants in this study were all late
bilinguals, we expect our sentence prediction algorithms to be com-
parably accurate for early bilinguals, since it is reasonable to assume
that the concept representation pattern in L1 of early bilinguals is
similar to late bilinguals and monolinguals.

5.4. Prediction direction

The modeling above mapped from semantics to neural activation,
but the inverse mapping, from neural activation to NPSFs, is also
possible. In a previous investigation of English monolingual speakers,
both directions yielded similar accuracies in the mapping between the
activation patterns and the NPSFs of sentences (Wang et al., sub-
mitted). Neural activation prediction models, such as the one used in
the current study, have several scientific advantages, at least in the
initial stage of model development (Naselaris et al., 2011). The most
salient advantage is that it can yield a functional characterization of
specific brain regions that can be compared to regional characteriza-
tions in other studies.

Semantics-prediction models, on the other hand, have application
advantages. They can serve as an interface for brain-reading and
neuroprosthetic technologies (Aflalo et al., 2015; Collinger et al.,
2013). They can also be used to assess knowledge of concepts in an
educational setting (Mason and Just, 2016).

5.5. The possibility of neural-based machine translation

Most automated translation applications, including Google trans-
late (Google Translate, 2016), use statistical machine translation (SMT)
algorithms (Koehn, 2009). SMT relies on parallel bilingual corpora (i.e.
sentence-to-sentence aligned texts between a pair of languages) as
inputs. Since it is costly to obtain large parallel bilingual corpora for
each pair of languages, the performance of SMT of many language pairs
(e.g. Arabic and Filipino) are often hindered.

The findings of neural commonality in concept representation
between speakers of different languages in this study may provide a
neurally-based mediation for machine translation. Essentially, it can
mediate translations between a pair of languages in terms of the
commonality of the neural representation of concepts. With the
advancement of mapping neural activation patterns evoked by various
languages, as well as further development of NPSFs, neurally-based
mediation might serve as a future alternative way of obtaining parallel
corpora, or even be developed into a neurally-based machine transla-
tion technology.

5.6. Future directions

The findings of this study suggest that several lines of future work
should be useful for developing a broader neurosemantic theory of
cross language commonality and empirically applying it at a sentence
or discourse level.

First, syntactic features as well as thematic role features need to be
implemented in a way that aligns well with their respective neural
encoding mechanisms. Second, such a model needs to be tested in
other less similar languages, outside the Indo-European language
family. Third, cross-modality (spoken versus written) prediction across
languages needs to investigated.

6. Conclusions

The current study demonstrates the commonality of the neural
representation of sentences across two languages. The model success-
fully predicted Portuguese sentences using brain locations and weights
applied to Neurally Plausible Semantic Features from a mapping
developed in English. The mapping between the neural activation
patterns and Neurally Plausible Semantic Features can be obtained
from any group of participants (Portuguese monolingual, English
monolingual, or Portuguese-English bilingual) in either language
(English or Portuguese) and yield successful prediction of the activa-
tion evoked by a new sentence composed of new words. The model also
captured the gist of the described event or state rather than depending
on any particular word class or any other idiosyncrasies. In sum, the
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model demonstrated meta-language prediction capabilities across
languages, people, and bilingual status. Future studies will have to
determine the extensibility of this approach to other pairs of less
similar languages and to other communication media, such as events
depicted in videos.
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Supplemental Materials  

Table S.1. Definitions and examples of the Neurally Plausible Semantic Features (NPSF)  

Category * Feature  Definition Examples 

Perceptual and 

Affective 

Characteristics 

of an Entity 

Man-made objects or settings made by humans 
bicycle, desk, newspaper, 

church 

Natural objects or activities occurring in nature flower, flood, island 

Inanimate non-living object ball, coffee, window 

Visual perception visual perceptual properties 
big, blue, empty, new, 

shiny 

Size Physical volume or size big, heavy, long, small 

Color self-explanatory 
black, blue, green, red, 

white 

Temperature related to temperature 
sun, summer, winter, 

cold, hot 

Positive valence self-explanatory 
celebrate, laugh, vacation, 

happy 

Negative valence self-explanatory 
destroy, fear, terrorist, 

dangerous, sick 

High intensity high affective arousal 
celebrate, shout, 

hurricane, angry 

Animate Beings 

Person a human being 
boy, doctor, farmer, pilot, 

voter 

Animal an animal or anatomy of animals 
bird, dog, duck, feather, 

horse 

Human-group more than one human being 
team, couple, family, 

mob, council 

Time and Space 

Settings place or temporal settings 
lake, church, park, night, 

hotel 

Unenclosed 
an environment without shelter or 

enclosure 

beach, lake, field, island, 

street 

Location 
actions or events that imply spatial 

settings 
meeting, visit, stay, live 

Shelter 
being enclosed, indoors is a salient 

feature; opposite of unenclosed 

car, hotel, school, 

hospital, store 

Change of location self-explanatory 
approach, hike, throw, 

car, run 

Event self-explanatory 
dinner, protest, trial, 

vacation 

Time-related related to a time period or timing 
morning, night, spring, 

summer, end 

Human Activity 

Type 

Violence/conflict 
involving aggression and those who 

commit it 

army, guard, soldier, 

terrorist 

Health related to improving or threatening health 
medicine, doctor, patient, 

victim, hospital 

Eating/drinking self-explanatory 
drink, eat, dinner, corn, 

restaurant 

Communication medium of communication 
listen, speak, newspaper, 

author, reporter 

Sports 
related to recreation or competitive 

physical activities 

play, soccer, baseball, 

bicycle, team 

Technology related to technology or technical skills computer, television, 
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engineer, scientist 

Money 
related to financial activities or 

economics 

buy, cash, banker, 

expensive, wealthy 

Arts and literature 
objects, actions or professions related to 

humanities, arts, literature 

actor, author, artist, 

theatre, draw 

Social norms related to law and authority structure 
trial, criminal, lawyer, 

court, prison 

Governance related to civics, politics, dominance 
debate, protest, army, 

mayor, embassy 

Intellectual 
requiring, gaining, or providing 

knowledge or expertise 

plan, read, computer, 

engineer, school 

Social Action 

or State 

Transfer of 

possession 

transaction (giving/receiving); change of 

ownership 
give, steal, take, buy 

Social interaction interaction between two or more subjects 
interview, negotiate, 

party, lonely 

Social support 
providing social support is a salient 

feature 

help, family, minister, 

parent 

Physical Action 

or State 

Physical action self-explanatory 
kick, throw, play, walk, 

march 

Change of 

physical state 
self-explanatory destroy, fix, grow, break 

Physical impact 
two subjects or objects coming in contact 

with each other 
break, destroy, drop, kick 

Mental Action 

or State 

Mental action 
requiring cognitive processes; occurring 

internally 

liked, plan, want, teacher, 

clever 

Perceptual action self-explanatory 
listen, watch, read, 

witness 

Emotion Emotional state or action fear, laugh, like, happy 

Abstractness Abstract 
detached from sensory or motor 

properties; low imageability 
plan, want, clever 

Part of Speech Attribute adjectives 
aggressive, blue, shiny, 

sick 

* The grouping into categories is intended to facilitate description and is not used in the modeling. 
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Table S.2. Summary of the neurosemantic brain locations, their central MNI coordinates, sizes 

and associated factors. Clusters larger than 10 voxels were shown in Figure 1.  

 

Factor Center location 
MNI coordinates Radius 

(mm) 

Number of 

voxels x y z 

People 

posterior cingulate cortex /precuneus -1 -56 30 10.5 212 

L superior frontal gyrus -15 59 25 7.1 22 

R superior medial frontal gyrus 5 61 20 6.7 39 

R superior medial frontal gyrus 9 53 34 6.3 17 

R superior orbitofrontal cortex 26 59 -3 5.6 20 

L middle temporal gyrus -48 -68 20 8.6 51 

R middle temporal gyrus 51 -61 19 7.9 88 

R anterior temporal lobe  57 -4 -22 5 27 

L middle temporal gyrus -61 -18 -21 4.2 7 

R superior frontal gyrus  17 36 45 3.2 7 

L middle frontal gyrus -30 30 45 4.2 6 

R middle temporal gyrus  62 -14 -21 4.4 5 

L superior temporal gyrus -49 -46 16 3.6 5 

L superior occipital gyrus -26 -74 38 4 5 

L middle frontal gyrus -31 19 54 3.9 5 

Places 

L parahippocampal place area -28 -41 -16 7.7 65 

R parahippocampal place area 29 -36 -20 6 52 

L precuneus -12 -57 16 7.8 46 

R precuneus 14 -54 15 8.7 76 

L middle occipital gyrus -39 -81 29 7.3 34 

R middle occipital gyrus 41 -80 31 5.6 14 

R angular gyrus 45 -63 31 5.3 11 

L precuneus  -6 -71 55 6 9 

R middle temporal gyrus 57 -2 -22 3.9 6 

Actions 

L middle frontal gyrus -37 30 27 7.2 11 

L supramarginal gyrus -60 -30 32 8.4 17 

L inferior parietal gyrus -52 -39 47 7.9 14 

R angular gyrus 45 -73 36 7.8 16 

L middle temporal gyrus -54 -60 2 10.8 61 

L middle occipital gyrus -35 -79 30 8.2 17 

R inferior frontal gyrus  46 37 7 4.7 14 

R fusiform gyrus  40 -14 -35 4.3 10 

L precentral gyrus -52 10 32 3.8 5 

L fusiform gyrus  -42 -53 -19 3.3 5 

L inferior frontal gyrus, pars orbitalis -31 32 -18 3.7 5 
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L inferior parietal lobule -44 -37 36 4.1 5 

Feelings 

R temporal-parietal junction 54 -47 12 7.2 17 

R inferior frontal gyrus, pars 

triangularis 
46 33 7 3.7 7 
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Table S.3.  The complete list of stimulus sentences and their respective English translations  

ID Stimulus Sentences English Translations  

1 A família estava feliz.  The family was happy. 

2 O político visitou a família. The politician visited the family. 

3 A família brincou na praia. The family played at the beach. 

4 Os pais compraram a revista. The parents bought the magazine. 

5 A criança quebrou o copo no restaurante. The child broke the glass in the restaurant. 

6 Os pais gritaram com a criança. The parents shouted at the child. 

7 O casal feliz visitou a embaixada. The happy couple visited the embassy. 

8 O casal rico saiu do teatro. The wealthy couple left the theater. 

9 Os pais visitaram a escola. The parents visited the school. 

10 A criança feliz encontrou a moeda de dez 

centavos. 
The happy child found the dime. 

11 A criança deu a flor para o artista. The child gave the flower to the artist. 

12 O soldado atravessou o campo. The soldier crossed the field. 

13 O comandante ouviu o soldado. The commander listened to the soldier. 

14 O cavalo atravessou o campo verde. The horse walked through the green field. 

15 A garota viu um cavalo no parque. The girl saw a horse in the park. 

16 O engenheiro caminhou no parque tranquilo. The engineer walked in the peaceful park. 

17 A flor era amarela. The flower was yellow. 

18 O pássaro amarelo sobrevoou o campo. The yellow bird flew over the field. 

19 O velho médico andou pelo hospital. The old doctor walked through the hospital. 

20 O autor rico entrou no escritório. The wealthy author walked into the office. 

21 O cachorro quebrou a televisão. The dog broke the television. 

22 A rua estava vazia à noite. The street was empty at night. 

23 A rua estava escura. The street was dark. 

24 O banqueiro assistiu ao protesto pacífico. The banker watched the peaceful protest. 

25 O eleitor foi ao protesto. The voter went to the protest. 

26 O protesto foi barulhento. The protest was loud. 
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27 O político assistiu ao julgamento. The politician watched the trial. 

28 O repórter falou com a multidão barulhenta. The reporter spoke to the loud mob. 

29 O prefeito negociou com a multidão. The mayor negotiated with the mob. 

30 A multidão era perigosa. The mob was dangerous. 

31 O político rico gostava de café. The wealthy politician liked coffee. 

32 O autor jovem falou com o editor. The young author spoke to the editor. 

33 O cientista falou com o estudante. The scientist spoke to the student. 

34 O cientista observou o pato. The scientist watched the duck. 

35 A testemunha foi ao julgamento. The witness went to the trial. 

36 A testemunha falou com o advogado. The witness spoke to the lawyer. 

37 A testemunha gritou durante o julgamento. The witness shouted during the trial. 

38 O júri observou a testemunha. The jury watched the witness. 

39 A vítima temia o criminoso. The victim feared the criminal. 

40 O engenheiro deu um livro para o estudante. The engineer gave a book to the student. 

41 A revista estava no carro. The magazine was in the car. 

42 O diplomata negociou na embaixada. The diplomat negotiated at the embassy. 

43 O diplomata gritou com o soldado. The diplomat shouted at the soldier. 

44 O prefeito ouviu o eleitor. The mayor listened to the voter. 

45 O diplomata famoso deixou o hospital. The famous diplomat left the hospital. 

46 O paciente sobreviveu. The patient survived. 

47 O paciente cansado dormiu no hospital escuro. The tired patient slept in the dark hospital. 

48 O autor chutou a mesa. The author kicked the desk. 

49 O turista foi ao restaurante. The tourist went to the restaurant. 

50 A mulher saiu do restaurante depois da 

tempestade. 

The woman left the restaurant after the storm. 

51 O restaurante estava barulhento à noite. The restaurant was loud at night. 

52 O artista gostava de frango. The artist liked chicken. 

53 O diplomata era rico. The diplomat was wealthy. 
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54 O prefeito derrubou o copo. The mayor dropped the glass. 

55 O cavalo machucado dormiu à noite. The injured horse slept at night. 

56 A jovem garota jogou futebol. The young girl played soccer. 

57 A garota viu o passarinho. The girl saw the small bird. 

58 O turista encontrou um pássaro no teatro. The tourist found a bird in the theater. 

59 A escola era famosa. The school was famous. 

60 A revista era amarela. The magazine was yellow. 

 

 

Sample paragraphs and questions of the adapted TOEFL English test administered to the 

Portuguese-English bilingual participants.  

 

Meteorite Impact and Dinosaur Extinction 

 

There is increasing evidence that the impacts of meteorites have had important effects on Earth, 

particularly in the field of biological evolution. Such impacts continue to pose a natural hazard to 

life on Earth. Twice in the twentieth century, large meteorite objects are known to have collided 

with Earth. 

 

If an impact is large enough, it can disturb the environment of the entire Earth and cause an 

ecological catastrophe. The best-documented such impact took place 65 million years ago at the 

end of the Cretaceous period of geological history. This break in Earth’s history is marked by a 

mass extinction, when as many as half the species on the planet became extinct. While there are 

a dozen or more mass extinctions in the geological record, the Cretaceous mass extinction has 

always intrigued paleontologists because it marks the end of the age of the dinosaurs. For tens of 

millions of years, those great creatures had flourished. Then, suddenly, they disappeared. 

The body that impacted Earth at the end of the Cretaceous period was a meteorite with a mass of 

more than a trillion tons and a diameter of at least 10 kilometers. Scientists first identified this 

impact in 1980 from the worldwide layer of sediment deposited from the dust cloud that 

enveloped the planet after the impact. This sediment layer is enriched in the rare metal iridium 

and other elements that are relatively abundant in a meteorite but very rare in the crust of Earth. 

Even diluted by the terrestrial material excavated from the crater, this component of meteorites is 

easily identified. By 1990 geologists had located the impact site itself in the Yucatán region of 

Mexico. The crater, now deeply buried in sediment, was originally about 200 kilometers in 

diameter. 

 

This impact released an enormous amount of energy, excavating a crater about twice as large as 

the lunar crater Tycho. The explosion lifted about 100 trillion tons of dust into the atmosphere, as 

can be determined by measuring the thickness of the sediment layer formed when this dust 
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settled to the surface. Such a quantity of material would have blocked the sunlight completely 

from reaching the surface, plunging Earth into a period of cold and darkness that lasted at least 

several months. The explosion is also calculated to have produced vast quantities of nitric acid 

and melted rock that sprayed out over much of Earth, starting widespread fires that must have 

consumed most terrestrial forests and grassland. Presumably, those environmental disasters could 

have been responsible for the mass extinction, including the death of the dinosaurs. 

Several other mass extinctions in the geological record have been tentatively identified with 

large impacts, but none is so dramatic as the Cretaceous event. But even without such specific 

documentation, it is clear that impacts of this size do occur and that their results can be 

catastrophic. What is a catastrophe for one group of living things, however, may create 

opportunities for another group. Following each mass extinction, there is a sudden evolutionary 

burst as new species develop to fill the ecological niches opened by the event. 

 

Impacts by meteorites represent one mechanism that could cause global catastrophes and 

seriously influence the evolution of life all over the planet. According to some estimates, the 

majority of all extinctions of species may be due to such impacts. Such a perspective 

fundamentally changes our view of biological evolution. The standard criterion for the survival 

of a species is its success in competing with other species and adapting to slowly changing 

environments. Yet an equally important criterion is the ability of a species to survive random 

global ecological catastrophes due to impacts. 

Earth is a target in a cosmic shooting gallery, subject to random violent events that were 

unsuspected a few decades ago. In 1991 the United States Congress asked NASA to investigate 

the hazard posed today by large impacts on Earth. The group conducting the study concluded 

from a detailed analysis that impacts from meteorites can indeed be hazardous. Although there is 

always some risk that a large impact could occur, careful study shows that this risk is quite small. 

 

1. In paragraph 2, why does the author include the information that dinosaurs had 

flourished for tens of millions of years and then suddenly disappeared? 

 

a. To support the claim that the mass extinction at the end of the Cretaceous is the best-

documented of the dozen or so mass extinctions in the geological record 

 

b. To explain why as many as half of the species on Earth at the time are believed to have 

become extinct at the end of the Cretaceous 

 

c. To explain why paleontologists have always been intrigued by the mass extinction at the end 

of the Cretaceous 

 

d. To provide counter evidence that an impact cannot be large enough to disturb the environment 

of the entire planet and cause an ecological disaster 

 

2. Which of the following can be inferred from paragraph 3 about the location of the 

meteorite impact in Mexico? 

 

a. The location of the impact site in Mexico was kept secret by geologists from 1980 to 1990. 
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b. It was a well-known fact that the impact had occurred in the Yucatán region. 

 

c. Geologists knew that there had been an impact before they knew where it had occurred. 

 

d. The Yucatán region was chosen by geologists as the most probable impact site because of its 

climate. 
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