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Abstract: Even though much has recently been learned about the neural representation of individual
concepts and categories, neuroimaging research is only beginning to reveal how more complex
thoughts, such as event and state descriptions, are neurally represented. We present a predictive com-
putational theory of the neural representations of individual events and states as they are described in
240 sentences. Regression models were trained to determine the mapping between 42 neurally plausi-
ble semantic features (NPSFs) and thematic roles of the concepts of a proposition and the fMRI activa-
tion patterns of various cortical regions that process different types of information. Given a semantic
characterization of the content of a sentence that is new to the model, the model can reliably predict
the resulting neural signature, or, given an observed neural signature of a new sentence, the model
can predict its semantic content. The models were also reliably generalizable across participants. This
computational model provides an account of the brain representation of a complex yet fundamental
unit of thought, namely, the conceptual content of a proposition. In addition to characterizing a sen-
tence representation at the level of the semantic and thematic features of its component concepts, factor
analysis was used to develop a higher level characterization of a sentence, specifying the general type
of event representation that the sentence evokes (e.g., a social interaction versus a change of physical
state) and the voxel locations most strongly associated with each of the factors. Hum Brain Mapp
38:4865–4881, 2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Although individual concepts may be the fundamental
elements of thought, the generativity and complexity of
human thought stem from the ability to combine multiple
concepts into propositions. Functional neuroimaging
approaches have provided remarkable insights concerning
the neural representations of individual concepts [Ander-
son et al., 2014; Bauer and Just, 2015; Coutanche and
Thompson-Schill, 2015; Ghio et al., 2016; Huth et al., 2012;
Just et al., 2010; Mason and Just, 2016; Mitchell et al., 2008;
Peelen and Caramazza, 2012; Pereira et al., 2011; Shinkar-
eva et al., 2011; Wang et al., 2013] and segments of stories
[Huth et al., 2016; Wehbe et al., 2014], interconcept rela-
tions [Frankland and Greene, 2015; Wang et al., 2016], or
combined concepts [Baron and Osherson, 2011]. But char-
acterizing the neural representations of more complex
thoughts, such as event and state descriptions, has
remained a considerable challenge.

This article develops a computational account of the
mapping between the concepts of a proposition describing
an event or state and the neural representation that it
evokes. The major advance of this study is to characterize
the neural representation of events and states as they are
described by sentences, by developing a predictive, bidi-
rectional mapping between the conceptual content of a
sentence and the corresponding brain activation pattern.
In this article, we describe a computational model that can
predict the neural representation of 240 different proposi-
tions that describe events or states with reasonable accu-
racy and with reliable capture of the gist of the
proposition.

The initial approach taken here is that the neural repre-
sentation of a sentence is composed of the neural represen-
tations of its component concepts and the roles those
concepts play in the thematic structure of the sentence.
Each word concept in a sentence can be characterized in
terms of a set of neurally plausible semantic features
(NPSFs) and in terms of the concepts’ thematic role in the
sentence or event. The NPSFs are intended to correspond
to various brain subsystems, such as the motor system
representation of how one interacts with a concrete object,
or the perceptual system’s representation of the perceptual
properties of the object. The main analytic technique that
is used here to determine the mapping between semantic
features and neural activation patterns is multiple regres-
sion modeling. Once the mapping is determined in a large
subset of the data, it can then be used to make predictions
in the remaining independent subset.

The neural representation of the concepts of a sentence
or proposition must be expressed within the brain’s orga-
nizational system or ontology that categorizes and relates
a large number of different concepts. We make an initial
attempt at specifying this neurally based organizational
system, by developing 42 NPSFs that provide a starting
point for a neurally motivated feature representational sys-
tem. These features are considered neurally plausible

based on previous findings concerning the neural repre-
sentations of various types of semantic knowledge. For
example, some subsets of these features code perceptual
[Kanwisher et al., 1997; Martin, 2007; Oliver and
Thompson-Schill, 2003], motor [Hauk et al., 2004; Pulver-
m€uller et al., 2005], and affect-related [Baucom et al., 2012;
Chikazoe et al., 2014; Kassam et al., 2013] features of an
entity; one other subset codes different aspects of human
activity in society [Iacoboni et al., 2004; Spitzer et al.,
2007]; and one other subset codes properties pertaining to
time or space [Fernandino et al., 2016; Kranjec and Chat-
terjee, 2010; Lai and Desai, 2016].

This study develops a model that relates such semantic
features of concepts to the activation level of prespecified
clusters of voxels. The model extends the general approach
to all of the concepts in a proposition, and also takes into
account the thematic role of each concept. Given the
semantic and thematic characterization of the component
word concepts of a proposition, the model can predict the
activation pattern the reading of the corresponding sen-
tence will evoke.

The 42 NPSFs were coded in binary form, as applicable
or not applicable to each concept. The types of information
the NPSFs coded included the perceptual and affective
characteristics of an entity (10 NPSFs coded such features,
such as man-made, size, color, temperature, positive affec-
tive valence, and high affective arousal), animate beings
(person, human-group, animal), and time and space prop-
erties (e.g., unenclosed setting, change of location). For
example, a concept such as the noun judge was coded with
the following NPSFs: person, social norms, knowledge,
and communication. The general assumption was that
individual NPSFs could be related to activation levels in
particular clusters of voxels.

In addition to relating individual concepts to the activa-
tion patterns they evoked, the model assumes that the
neural signatures of the concepts in a sentence are sensi-
tive to the roles they play in the proposition’s argument
structure. The current model incorporates a thematic role
component [Fillmore, 1967] to account for context-
dependent, propositional-level semantics. Thus each con-
tent word is also coded in terms of its thematic role in the
sentence such as agent or patient.

The predictive ability of these NPSFs and thematic fea-
tures can be compared with other accounts provided by
semantic vector representations of concepts [Fellbaum,
1998; Landauer and Dumais, 1997; Niles and Pease, 2001]
that do not take neural organization into account. Semantic
vector representations are based on a word’s distributional
properties in a large language corpus, indicating a word’s
co-occurrence patterns with other words. A word such as
judge might be characterized in terms of its co-occurrence
with other items such as jury or decide. Latent Semantic
Analysis (LSA) [Landauer and Dumais, 1997] is a promi-
nent example of a semantic vector representational
approach. It is possible to construct a predictive model of
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the neural representations of concepts and sentences based
on the semantic vector representations of the concepts. In
the context of this article, semantic vector representations
provide a point of comparison to NPSFs.

In addition to characterizing a sentence representation at
the level of the semantic and thematic features of its com-
ponent concepts, we developed an additional characteriza-
tion of a sentence at a coarser level of granularity that
specifies the general type of thought that the sentence
evokes (e.g., the thought of a social interaction versus a
physical change of state). The main analytic technique that
was used to determine these coarser dimensions of repre-
sentation was factor analysis applied to the sentence acti-
vation data, to identify the emerging meaning dimensions
that characterize sentence representations. This facet of the
analysis was data-driven (rather than driven by hypothe-
sis); the resulting clustering of sentences with similar acti-
vation patterns indicated that they shared coarse
underlying semantic dimensions. This coarser level of
analysis plays three roles in this study. It identifies the 4
main types of meaning dimensions that underlie the set of
240 stimulus sentences. It identifies the main regions of
brain activation that correspond to the processing of the
240 sentences. And it indicates the correlation between
each of the 42 NPSFs and the 4 main meaning dimensions.

One methodological challenge presented by the study of
the neural representations of sentences was to overcome
fMRI’s convolution of the signals from temporally adjacent
stimuli, in this case, the successive words of a sentence.
Previous studies of the neural processing of a story mod-
eled the text in terms of semantically arbitrary segments
determined by image acquisition segments [Huth et al.,
2016; Wehbe et al., 2014]. The current approach of model-
ing a proposition and its component concepts uses the
brain image that occurs at the end of the reading of a sen-
tence. Our preliminary findings showed that this image
contained the neural representation of all the word con-
cepts in the sentence; thus there was no attempt to seg-
ment the observed fMRI signal evoked by a sentence into
arbitrary time intervals. To obtain an estimate of the neu-
ral representation of an individual word concept, the end-
of-sentence brain images of the several sentences that con-
tained the target concept were averaged, on the assump-
tion that the images of other words are averaged out. The
resulting estimates of the neural representations of con-
cepts provide a robust basis for developing a mapping
between semantic representations and brain activation
patterns.

This study thus has two main goals. The main goal was
to develop a mapping between a semantic characterization
of a sentence (based on the individual word concepts in
the sentence and their thematic roles) and the resulting
brain activation pattern that occurs when the sentence is
read. The mapping can then be used to predict the activa-
tion pattern of an entirely new sentence containing new
words, simply based on its semantic characterization.

Furthermore, the mapping that is developed in the model
is bidirectional, such that it is also possible to predict the
semantic properties of the word concepts in a new sen-
tence, given the activation pattern that the sentence
evokes. Closely related to the main goal was an assess-
ment of the similarity across participants of the mapping
between semantic features and neural representations. It is
possible that every participant has a systematic mapping
between semantic features and activation patterns, but this
mapping could be similar or dissimilar across participants.

The second main goal of this study was to characterize
the broad semantic dimensions that underlie the activation
of sentences that describe simple events and states,
obtained using factor analysis of the activation patterns
that accompany a large number of sentences. The emerg-
ing factors provide a characterization of the neural organi-
zation of semantics at a coarser grain size than individual
semantic features.

METHODS

Participants

Seven healthy, right-handed, native English-speaking
adults (mean age 5 25, range 5 20–35, two males) from the
Carnegie Mellon community gave written informed con-
sent approved by the Carnegie Mellon Institutional
Review Board.

Stimuli and Procedures

The 240 stimulus sentences, generated by Glasgow et al.
[2016] described primarily events but also some states,
with each sentence containing a mean of 3.3 content words
(range 5 2–5) and a total of 242 unique words. Examples
of stimulus sentences are shown in Table I and the full set
of stimulus sentences is presented in Supporting Informa-
tion, Table S1. The component concepts of the sentences
were chosen to be representative of general human knowl-
edge (objects, human roles, actions, activities, attributes,
places, and time). All sentences were literal, used active
voice and past tense. A word appeared on average in 3.3

TABLE I. Examples of stimulus sentences

The journalist interviewed the judge.
The angry activist broke the chair.
The flood damaged the hospital.
The happy child found the dime.
The witness shouted during the trial.
The jury listened to the famous businessman.
The young author spoke to the editor.
The judge met the mayor.
The restaurant was loud at night.
The window was dusty.
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TABLE II. The 42 neurally plausible semantic features (NPSFs)

Categorya Feature Definition Example stimuli

Perceptual and affective
characteristics of an entity

Man-made Objects or settings made by
humans

Bicycle, desk, newspaper, church

Natural Objects or activities occurring in
nature

Flower, flood, island

Inanimate Nonliving object Ball, coffee, window
Visual perception Visual perceptual properties Big, blue, empty, new, shiny
Size Physical volume or size Big, heavy, long, small
Color Self-explanatory Black, blue, green, red, white
Temperature Related to temperature Sun, summer, winter, cold, hot
Positive affective valence Self-explanatory Celebrate, laugh, vacation, happy
Negative affective valence Self-explanatory Destroy, fear, terrorist, dangerous, sick
High affective arousal Self-explanatory Celebrate, shout, hurricane, angry

Animate beings Person A human being Boy, doctor, farmer, pilot, voter
Animal An animal or anatomy of

animals
Bird, dog, duck, feather, horse

Human-group More than one human being Team, couple, family, mob, council

Time and space Settings Place or temporal settings Lake, church, park, night, hotel
Unenclosed An environment without shelter

or enclosure
Beach, lake, field, island, street

Location Actions or events that imply spa-
tial settings

Meeting, visit, stay, live

Shelter Being enclosed, indoors is a
salient feature; opposite of
unenclosed

Car, hotel, school, hospital, store

Change of location Self-explanatory Approach, hike, throw, car, run
Event Self-explanatory Dinner, protest, trial, vacation
Time-related Related to a time period or

timing
Morning, night, spring, summer, end

Human activity type Violence/conflict Involving aggression and those
who commit it

Army, guard, soldier, terrorist

Health Related to improving or threat-
ening health

Medicine, doctor, patient, victim, hospital

Eating/drinking Self-explanatory Drink, eat, dinner, corn, restaurant
Communication Medium of communication Listen, speak, newspaper, author, reporter
Sports Related to recreation or competi-

tive physical activities
Play, soccer, baseball, bicycle, team

Technology Related to technology or techni-
cal skills

Computer, television, engineer, scientist

Money Related to financial activities or
economics

Buy, cash, banker, expensive, wealthy

Arts and literature Objects, actions or professions
related to humanities, arts,
literature

Actor, author, artist, theatre, draw

Social norms Related to laws and authority
structure

Trial, criminal, lawyer, court, prison

Governance Related to civics, politics,
dominance

Debate, protest, army, mayor, embassy

Intellectual Requiring, gaining, or providing
knowledge or expertise

Plan, read, computer, engineer, school

Social action or state Transfer of possession Transaction (giving/receiving);
change of ownership

Give, steal, take, buy

Social interaction Interaction between two or more
subjects

Interview, negotiate, party, lonely

Social support Providing social support is a
salient feature

Help, family, minister, parent
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sentences (range 5 1–7). There were 45 words that
appeared only in a single sentence.

The sentences were presented 4 times each over 4 days
of scans. This slow event-related design allowed acquisi-
tion of reliable single-trial neural signatures of individual
sentences. The stimulus onset asynchrony between senten-
ces was 12 s (5 s of sentence reading 1 7 s fixation). The
details of the stimulus presentation timing are described
in Supporting Information. This general experimental par-
adigm and choice of parameters has been applied in many
studies on neural representations of various types of con-
cepts [Just et al., 2010; Mason & Just, 2016; Shinkareva
et al., 2011; Wang et al., 2013].

Data were collected using a Siemens Verio 3 T MRI
scanner at the Scientific Imaging and Brain Research Cen-
ter at Carnegie Mellon University. Functional images were
acquired using a gradient echo EPI pulse sequence with
TR 5 1000 ms, TE 5 25 ms and a 608 flip angle. Twenty 5-
mm-thick, AC-PC aligned slices were imaged with a gap
of 1 mm between slices. The acquisition matrix was 64 3

64 with 3.125 3 3.125 3 6 mm3 voxels.

Data Preprocessing

Whole cortex fMRI data were corrected for slice timing,
head motion, linear trend, low-frequency trends (by apply-
ing a high-pass temporal filter at 0.005Hz), and normalized
into MNI space using SPM8 (Wellcome Department of
Cognitive Neurology, London). Further analyses were per-
formed using in-house scripts written in Matlab7 (Math-
works, MA, USA).

In the processing of the fMRI data for each presentation
of a sentence, the percent signal change (PSC) relative to a
baseline was computed at each voxel in the brain image.
The baseline activation level was measured during and
averaged over sixteen 17 s fixation conditions. The base-
line measurement started at 4 s after each fixation presen-
tation onset to account for the hemodynamic response
delay. The fMRI data to assess sentence reading consisted

of the mean of 5 brain images, collected 1 s apart from
each other, the first starting at 7 s from sentence onset.
The temporal window for the sentence data analysis was
chosen based on pilot investigations. The temporal win-
dow within which the neural signatures of all the content
words in a simple sentence, regardless of their serial posi-
tion in the sentence, was located in time after the entire
sentence had been read (as shown in Supporting Informa-
tion, Fig. S1). The PSC was then normalized to a mean of
0 and variance of 1 across voxels within each image, to
equate the overall intensities across scans.

Neurally Plausible Semantic Features

The mapping between the semantics of a sentence’s con-
ceptual content and its neural signature is presumed to be
mediated by a layer of semantic features, enabling the pre-
diction of the activation of a new sentence based on its
semantic content. A set of 42 neurally plausible semantic
features (NPSF) was developed to both characterize a
semantic property of some of the 242 unique corpus words
and to also correspond to a known or plausible neural proc-
essing mechanism. These binary features were defined for
each of the 242 word concepts in the corpus, where a coding
of 1 indicated that the feature was applicable to the word
concept. The coding was performed by two raters with dis-
agreements adjudicated by a third rater. Each word was
coded by taking into account the meaning of the word in all
of the stimulus sentences in which it appeared, and coding
it the same way in the various sentences in which it
appeared. The NPSF definitions and sample concepts per-
taining to each NPSF are shown in Table II. Table III shows
the NPSF coding of several example word concepts.

Thematic Role Variables That Characterize the

Sentence-Level Role of Concepts

In addition to the NPSF feature set, six additional varia-
bles were coded indicating the sentence-level role of each

TABLE II. (continued).

Categorya Feature Definition Example stimuli

Physical action or state Physical action Self-explanatory Kick, throw, play, walk, march
Change of physical state Self-explanatory Destroy, fix, grow, break
Physical impact Two subjects or objects coming

in contact with each other
Break, destroy, drop, kick

Mental action or state Mental action Requiring cognitive processes;
occurring internally

Liked, plan, want, teacher, clever

Perceptual action Self-explanatory Listen, watch, read, witness
Emotion Emotional state or action Fear, laugh, like, happy

Abstractness Abstract Detached from sensory or motor
properties; low imagability

Plan, want, clever

Part of speech Attribute Adjectives Aggressive, blue, shiny, sick

aThe grouping into categories is included here to facilitate description but was not used in the modeling.
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concept: main verb, agent or experiencer, patient or recipi-
ent, predicate of a copular sentence (The window was
dusty), modifier (The angry activist broke the chair), and
complement in adjunct and propositional phrase, includ-
ing direction, location, and time (The restaurant was loud at
night). These variables covered all the roles that occurred
in the stimulus sentences. Thus, each word concept in a
sentence was coded not only with respect to the applica-
bility of the 42 NPSFs but also with respect to the 6 the-
matic roles (indicating which one of the 6 roles is
applicable). If a given word played a different thematic
role in different sentences then its thematic role would be
coded differently. The generative model can thus predict
different neural activity patterns for the same words in
different roles. This model has the capability of being
expanded to incorporate more thematic roles and different
types of sentence roles (such as negation).

Factor Analysis

To evaluate the data-driven dimensions of neural sen-
tence representation and identify the brain locations asso-
ciated with these dimensions, factor analysis (FA) methods
were applied.

The main FA was performed on data of the 3 partici-
pants with the highest preliminary sentence prediction
accuracy when using 300 most stable voxels anywhere in
the brain. A set of 600 voxels was selected for each partici-
pant, based on the stability of their activation profiles over
sentences across 4 presentations. Voxel stability refers to
responding similarly to the set of items in the training set
across multiple presentations of the set, that is, displaying
a repeatable semantic tuning curve. Fifty to sixty voxels
were selected from each of bilateral frontal, temporal, pari-
etal, fusiform, and occipital lobes and 40 voxels were
selected from cingulate cortex. A sentence was then char-
acterized by a mean image across 4 presentations in the
selected voxels. A two-level hierarchical exploratory factor
analysis was applied to the activation data for the 3 partic-
ipants. The first-level FA was applied to the activation

profiles of 600 voxels over the 240 sentences within partici-
pants, resulting in 7 factors underlying the voxel activation
profiles per participant. The second-level FA was per-
formed on these 21 factors to further aggregate the neural
dimensions over participants. The first 5 factors of the
second-level FA explained 37% of the variation. These fac-
tors formed the group-level characterization of the main
dimensions that underlie the activations.

Each of the second-level factors was associated with a
set of voxels, by tracing back each second-level factor to
the first-level factors with factor loadings >|0.4|. For each
of the identified contributing factors, contributing voxels
with a factor loading >|0.4| were selected. The resulting
clusters with a minimum of 5 contributing voxels were
identified as the brain locations associated with the
second-level factors. To account for the variability of repre-
sentations across participants, each cluster was approxi-
mated by applying an algorithm that grows a cluster by
one voxel in all directions.

Model Training and Prediction of Neural Activity

(Activation-Predicting Model)

Given the semantic content of a sentence, the goal was
to predict the neural activation pattern that the reading of
the sentence would evoke. The neural activation was lim-
ited to the brain locations discovered using FA. The proce-
dure used a cross-validation protocol that leaves one
sentence out as the test data in each fold, so that every
sentence is tested once after all the iterations of training-
test assignment. The training and test sets are always kept
independent during the model training and prediction.

The activation data that characterized each sentence
reading was the mean percent signal change over a 5 s
interval acquired after sentence reading (sentences lasted a
mean of 1.4 s), starting at 7 s from sentence onset (see Sup-
porting Information for details of presentation).

The normalized PSC images of 240 sentences with 4 pre-
sentations were partitioned into training and test set in
each cross-validation fold. The data from one test sentence
(including all 4 times it was presented) were left out from
the model’s training set. Using only the data in the train-
ing set, brain images corresponding to each content word
were constructed by averaging the PSCs of all the training
sentences that contain that content word.

The data that were used to train the regression model
were the means of the images corresponding to the senten-
ces in the training set that contained the same content
words manifesting the same roles. The voxels that were
used for training and testing were the selected stable vox-
els within the regions identified by a factor analysis (see
Supporting Information for specifics of the voxel selection
procedure). It is important to note that the factor locations
that were used in the modeling of a given participant
always excluded all of the data from that participant. Specif-
ically, brain locations identified by the FA based on the 3

TABLE III. Examples of NPSF coding of content word

concepts

Word NPSF features

Interview Social, Mental action, Knowledge, Communication,
Abstraction

Walk Physical action, Change of location

Hurricane Event, Change of physical state, Health, Natural,
Negative affective valence, High affective arousal

Cellphone Social action, Communication, Man-made, Inanimate

Judge Social norms, Knowledge, Communication, Person

Clever Attribute, Mental action, Knowledge, Positive
affective valence, Abstraction
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participants with the highest prediction accuracies were
used to perform the sentence decoding of the 4 remaining
participants. For decoding of these 3 high-accuracy partici-
pants, three additional FAs were performed following the
same procedure except for replacing the participant being
classified with the fourth best participant’s data.

A kernel ridge regression model [Hastie et al., 2009] was
trained to map the relations between the activation patterns
from selected representative voxels and intermediate seman-
tic features of words. The learned weights specified the con-
tributions of each of the semantic features to the activation of
a voxel. The trained models from the selected voxels were
then used to predict the neural signatures of all 351 role-
specific words, given the corresponding semantic features.

The predicted brain activity pattern associated with each
of the 240 sentences was the mean of the activity associ-
ated with its component words at certain thematic roles,
without any activation information from the target sen-
tence. In each cross-validation fold, all four presentations
of the test sentence were left out of the training set, and
the left-out data were used for testing. The four presenta-
tions of the test sentence were averaged to minimize noise.
Only the voxels selected based on the training set were
considered in the analysis. The left-out (observed) image
of the test sentence was compared to each of the 240 pre-
dicted sentence images, in terms of cosine similarity. The
performance of the prediction was assessed by the normal-
ized rank, or rank accuracy, of the similarity of the pre-
dicted test sentence in the list of 240 alternatives.

The statistical significance of the prediction accuracy
was determined based on the null distribution generated
by a 105-iteration random permutation of data, so that the
number of cross-validation folds, number of test items per
fold, and number of classes were controlled.

The methods used for the meaning-predicting model
used the same framework and are reported in Supporting
Information.

Cross-Participant Prediction of Neural

Representation of Sentences

Interparticipant commonality of sentence representation
was assessed by training a model on the mapping from the
NPSF features to brain images using the fMRI data from all
but one participant, and then predicting the brain activity of
the left-out participant. The specific methods applied were
the same as in the within-participant activation-predicting
model, except for the method of voxel selection. For the
data of the participants in the training set, representative
voxels were selected based on their stability of activation at
the sentence level. The cross-participant stability was
defined as follows: for each of the 6 training participants,
the response profiles of word concepts at each voxel were
averaged across 4 presentations. The cross-participant sta-
bility was the mean pairwise profile similarity between par-
ticipants. Only voxels within the prespecified factor

locations identified using data of the three most accurate
participants in the training set were considered. The same
set of representative voxels was then used to characterize
the data of the test participant.

The Model’s Capture of Event Semantics:

Behavioral Judgment of Event Similarity

Human judgments of the similarity of pairs of sentences
were crowdsourced using Amazon Mechanical Turk (MT,
www.mturk.com) in accordance with the Carnegie Mellon
Institutional Review Boards. The sentence stimuli were 195
noncopula sentences that described events, omitting the 45
copula sentences (e.g., The flower was yellow), to limit the
number of pairs to 18915. These pairs of sentences were
organized in 195 groups of 97 pairs of sentences, arranged
in different groupings for different MT workers.

Because the vast majority of the sentences were semanti-
cally dissimilar, each MT worker was instructed to select
only 1 pair of sentences describing the most similar pair of
events within each group of 97 pairs, resulting in 195 pairs
of sentences judged as similar. Among the sentence pairs
judged as most similar, there were 18 pairs of sentences
that were selected by three out of the four MT workers.

Alternative Semantic Representations

Linguists and psychologists have proposed several differ-
ent types of semantic representations of individual concepts
that unlike NPSFs, were not intended to be related to brain
function. The ability of four vector-space characterizations
of the 242 word concepts was compared to the NPSFs’
account of the fMRI data. These vector-space representa-
tions characterize a word’s meaning based on its co-
occurrence with other words in large corpus. These four
alternatives included GloVe vectors for word representation
(300 dimensions) [Pennington et al., 2014], doc VSM and
dep VSM (a documents-based and a dependencies-based
vector space model, respectively, 1000 dimensions each)
[Fyshe et al., 2013], and Latent Semantic Analysis (LSA, 308
dimensions) [Landauer and Dumais, 1997]. The vector used
to represent a sentence was the mean of the vectors repre-
senting the individual word concepts. The analyses
reported below assessed the accuracy of each of these rep-
resentational approaches in predicting brain activation pat-
terns associated with comprehending a sentence, in
comparison with the accuracy of the NPSFs’ account.

RESULTS

Predicting Neural Signatures of New Events

From Their Semantic Content

Activation prediction

The neural representation evoked by the reading of an
individual sentence was reliably predicted based on its
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semantic and thematic content. Given the word-level
semantic (NPSF) and thematic features of the content
words of a left-out sentence, the model can predict the
activation pattern of a sentence that is new to the model
with a mean rank accuracy of 0.86 among 240 alternatives,
where chance is 0.50. The analyses associated with this
finding are described in more detail below.

The semantic-feature-to-fMRI mapping was learned by
training on the data from 239 sentences using a kernel
ridge regression model [Hastie et al., 2009], while the
image of the 240th sentence was left out for testing the
accuracy of the prediction in each cross-validation fold. A
mapping from the 42 neurally plausible semantic features
and 6 thematic role variables to the activations in selected
voxels in preidentified brain regions was learned using all
the concepts in the 239 training sentences. The a priori
regions were clusters with high factor loadings on any of
the main dimensions revealed by factor analysis of the
activation data of other participants (as described below).
The neural signatures of all of the component content
words of the test sentence were predicted using their
NPSF values and thematic roles and applying the learned
mapping. The predicted neural signature of a sentence
was the mean of the predicted signatures of its component
words. To assess the model’s prediction accuracy for a
given test sentence, the observed activation pattern of the
test sentence was compared for similarity to the predicted
activation patterns of all 240 sentences (using the cosine
measure of similarity). The accuracy measure was the nor-
malized rank of the similarity of the test sentence’s pre-
dicted activation pattern, among the 240 predictions, to its
actual activation pattern. This procedure iterated through
240 cross-validation folds, testing each sentence once. At
the group level (where the fMRI images of all 7 partici-
pants were averaged), the mean rank accuracy for the 240
sentence predictions was 0.86, as shown in Figure 1, signif-
icantly different from chance (P< 1025).

While the rank accuracy provides a measure of how dis-
tinct the predicted neural signature of a sentence is from
those of other sentences, it is indifferent to the absolute
similarity between the observed and the model-predicted
neural signatures. To assess the absolute similarity, cosine
similarity between the actual and predicted signatures was
computed over the voxels being modeled. The mean
observation-prediction similarity over sentences was 0.42,
significantly different from chance (P< 1025). To estimate
the ceiling that this similarity measure can reach given the
noise in the current data, the similarity between the
images of the same sentences as observed in different pre-
sentations was computed. The mean image of two presen-
tations was compared with the mean image of the other
two presentations by exhausting all possible combinations
of presentation pairs when all the other parameters were
controlled. This measure of observation–observation simi-
larity results in a mean of 0.58. Thus, the mean absolute
similarity of 0.42 between the observed and the model-

predicted neural signatures of the 240 sentences captures
more than two-thirds of the maximum possible similarity
of 0.58.

When the model was implemented at the level of each
individual participant, the mean rank accuracy of the pre-
dictions across participants was 0.82 (range 5 0.79–0.84), as
shown in Supporting Information, Table S2). Aggregating
the fMRI data over participants apparently reduces the
noise and provides a more accurate mapping (mean rank
accuracy of .86, described above). The remaining analyses
were performed at the individual level unless otherwise
specified.

Although the model above was trained without any
direct information about the activation associated with the
test sentence, a word in the test sentence could have
occurred in other sentences in the training set. To test the
model’s predictive ability in the absence of any such infor-
mation, a second classifier was trained only on sentences
that did not contain any of the words in the test sentence
(resulting in a meaning training set size of 229 sentences),
thus excluding all activation levels associated with any of
the word concepts in the test sentence. The resulting accu-
racy of the sentence prediction decreased only marginally,
remaining at a mean rank accuracy of 0.81 over partici-
pants (range 5 0.78–0.83). Thus, the sentence prediction
accuracies are primarily based on the mapping between
brain activation patterns and semantic and thematic fea-
tures, rather than on the mapping to observed activation
patterns of particular word concepts. In addition, this anal-
ysis establishes the model’s ability to predict activation for
the previously unseen words.

Figure 1.

Rank accuracy of identifying the 240 sentences using the

activation-predicting model or the meaning-predicting model.

Error bars indicate standard deviations. The rank accuracy for

each participant individually was significantly above chance level

(the critical value of the rank accuracy being significantly differ-

ent from chance level at P 5 1025 is 0.58 based on random per-

mutation tests).
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Figure 2.

Predicted and observed activation patterns and semantic fea-

tures (NPSFs) for two pairs of sentences (sentences A and B in

the first panel, sentences C and D in the second panel), display-

ing the similarity between the model-predicted (upper row) and

observed (lower row) activation patterns for each of the senten-

ces. See text for quantitative measures of similarity. Also note

the similarities between the two sentences within each pair (col-

umns A and B and columns C and D) in terms of their predicted

activation, observed activation, and semantic features (NPSFs).

The geometric symbols (hexagon, diamond, rectangle, and

ellipse) pointing to voxel clusters and adjoining the test sentence

semantic features (NPSFs) correspond to locations of voxels

clusters with high factor loadings on the large-scale semantic fac-

tors of people, places, actions (and their consequences), and feelings,

respectively (Fig. 4C). The font size of the NPSFs indicates their

mean values averaged across the content words of the sentence.



Meaning prediction

The mapping in the other direction, decoding semantic
content from activation patterns, yielded a similar out-
come. Given an unlabeled fMRI image evoked by the
reading of a test sentence, the activation-to-features map-
ping model was trained on the data from the other 239
sentences and used to predict a vector of the NPSF
semantic features of the test sentence. For example, given
only the activation associated with the sentence The wit-
ness shouted during the trial, the model predicts that the
sentence contained the following nonzero NPSFs, ordered
in terms of their relative weights: negative affective
valence, human group, communication, high affective

arousal, person, social action, mental action, social norms,
and perceptual. The accuracy measure assessed the simi-
larity of the actual (coded) vector of NPSFs to the pre-
dicted vector, relative to its similarity to the predicted
vectors of all 240 sentences. The group-level and
individual-level models produced a rank accuracy of 0.87
and mean rank accuracy of 0.83 (range 0.80–0.87), respec-
tively, very similar to the activation-predicting model
(Supporting Information, Table S2). For brevity, further
analyses were performed using the activation-predicting
model at the individual participant level, unless other-
wise specified.

The Model’s Capture of Event Semantics

The model’s confusion errors and the decoding outcome
of the meaning-predicting model indicated that it was cap-
turing the semantics of the events described by the senten-
ces. The activation predictions of sentences describing
similar types of events—such as The flood damaged the hos-
pital and The storm destroyed the theater—were similar to
each other, as Figure 2 illustrates. The model characterizes
similar events similarly even when the specific words and
concepts of the sentences are dissimilar.

To systematically assess how well the model captured
such event similarities, the model’s measure of event simi-
larity was compared to independent human judgments of
sentence meaning similarity for the 18,915 pairs of sentences
formed by only the 195 out of the 240 sentences that
described events. The model-based intersentence similarity
was measured by the mean pairwise similarity of the pre-
dicted activation patterns across individual participants.
The 18 pairs of sentences that were judged to be most

TABLE IV. Normalized rank of the 18 behaviorally judged most similar pairs of sentences with respect to the mod-

el’s similarity measure. Each row indicates a pair. The pairs are ordered by their rank in the model’s similarity

prediction

Sentence 1 Sentence 2 Rank

The editor drank tea at dinner. The lawyer drank coffee. 1.00
The artist hiked along the mountain. The tourist hiked through the forest. 0.99
The activist listened to the tired victim. The policeman interviewed the young victim. 0.99
The fish lived in the river. The duck lived at the lake. 0.99
The council read the agreement. The policeman read the newspaper. 0.98
The dangerous criminal stole the television. The terrorist stole the car. 0.97
The witness shouted during the trial. The jury listened to the famous businessman. 0.97
The angry lawyer left the office. The tired jury left the court. 0.94
The witness went to the trial. The witness spoke to the lawyer. 0.93
The wealthy politician liked coffee. The lawyer drank coffee. 0.92
The accident damaged the yellow car. The accident destroyed the empty lab. 0.91
The flood damaged the hospital. The soldier delivered the medicine during the flood. 0.89
The boy threw the baseball over the fence. The boy kicked the stone along the street. 0.89
The young girl played soccer. The happy girl played in the forest. 0.87
The yellow bird flew over the field. The girl saw the small bird. 0.78
The tourist found a bird in the theater. The man saw the fish in the river. 0.41
The author kicked the desk. The horse kicked the fence. 0.33
The couple read on the beach. The cloud blocked the sun. 0.21
Mean 0.83

Figure 3.

Comparison of sentence activation prediction accuracies using

different types of predicting semantic features. Error bars indi-

cate standard errors. The P values indicate the comparison

between the mean rank accuracy using each of the four alterna-

tives versus the NPSF-based model in paired-sample t tests over

7 participants. **Two-tailed P< 0.01; *two-tailed P< 0.05.
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Figure 4.

Relations between brain locations, large-scale semantic factors

underlying sentence representations, and neurally plausible

semantic features (NPSFs) of concepts. (A) Brain regions associ-

ated with the four large-scale semantic factors: people (yellow),

places (red), actions and their consequences (blue), and feelings

(green). Details of the region locations are shown in Supporting

Information, Table S3. (B) Word clouds associated with each

large-scale semantic factor. The clouds are formed using the 7

neurally plausible semantic features most associated with each

factor to illustrate some of the main meaning components of

each factor. (C) NPSFs that correlate with at least one factor

with r> 0.3 (P< 0.0001). The pairwise correlations are com-

puted between each NPSF and the factor scores over sentences.

The NPSF for a sentence is computed as the mean of the NPSFs

of all the concepts in the sentence.
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similar by the human raters had a mean rank accuracy of
0.83 in the list of sentence pairs ranked by model-predicted
similarity, as shown in Table IV. This high consistency
between the human judgment and the model-based neural
similarity measures demonstrates that the model captures
the core meaning of events at a level of abstraction higher
than the meanings of the individual words.

Comparing NPSFs With Other Semantic

Representations

The prediction performance of the models above was
based on the mapping between the neural signatures of
concepts and a postulated layer of meaning elements,
namely, the neurally plausible semantic features (NPSFs).
Four alternative semantic characterizations of the sentence
content were compared to the NPSFs’ account. These alter-
natives, all based on semantic vector space models, use
features derived from word co-occurrence norms in text
corpora: GloVe vectors for word representation [Penning-
ton et al., 2014], a documents-based and a dependencies-
based vector space model (doc VSM and dep VSM) [Fyshe
et al., 2013], and LSA [Landauer and Dumais, 1997]. The
NPSF features performed reliably better than any of the
other feature sets in this comparison, as shown in Figure
3. Dimensionality as an intrinsic attribute of each vector
space model might be responsible for the accuracy differ-
ences. Nevertheless, the decoding performance provides a
pragmatic test of the information content that can be
explained by these features. The corpus-based, automati-
cally generated vector representations also produced
accounts that were very reliably above chance level, dem-
onstrating the robustness of the general approach using
alternative semantic characterizations.

Commonality of Neural Representations of

Sentences Across Individuals

To determine whether the brain activation pattern for a
given sentence was similar across people, a model that
predicted brain activation patterns from semantic features
was trained on the data of all but one participant, and
tested on the data of the left-out participant. The mean
accuracy of the activation-predicting model in the left-out
participant’s brain based on the neural representations of
other 6 people was 0.77 (range 5 0.72–0.79). This finding
indicates a considerable degree of cross-individual com-
monality in the neural representation of sentences, and in
the pattern of associations between the semantic and neu-
ral elements.

Thematic Role Representation: Distinguishing

Agent and Patient Roles in Reversible Sentences

The concepts that filled the agent and patient roles in
many of the stimulus sentences made the thematic role

assignment unambiguous, such as The happy child found the
dime. When the thematic role variables were omitted from
the model, the accuracy of sentence prediction decreased
slightly and significantly from a mean of 0.82–0.80 (paired-
sample t6 5 8.4, P< 0.001). An ancillary study was run
using sentences whose agent and patient concepts were
reversible (e.g., The rabbit punches the monkey), to determine
how accurately the thematic roles of each concept could be
decoded and whether any additional locations of brain
activation came to light (the methods are described in Sup-
porting Information). The main finding was that the agent
and patient roles of the two animal concepts could be reli-
ably decoded from the neural representation with a mean
accuracy of 0.80 across five participants, demonstrating the
decodability of this level of information from the structure
of a sentence, independently of the conceptual content of
the role fillers [Frankland and Greene, 2015]. Furthermore,
the voxels used in this decoding included 17 clusters, 13
of which were within or adjacent to the regions identified
in the main study (Supporting Information, Fig. S2). The
remaining 4 clusters were in spatially distinct regions in
the precuneus, right amygdala, left anterior middle tempo-
ral lobe, and the right precentral gyrus (circled in Support-
ing Information, Fig. S2). Without these 4 additional
clusters, the accuracy of identifying the thematic roles in
the ancillary study decreased to 0.75, but remained reliably
above chance (P< 0.05).

The contribution of the ancillary study is to identify
additional regions for representing the thematic organiza-
tion of a sentence when this organization has to be
inferred from the sentence structure. Activation in the
amygdala has been shown to be mediated by superior
temporal cortex; the activation patterns in this region dif-
ferentiate pairs of reversible sentences [Frankland &
Greene, 2015]. The precuneus cluster has been found to be
sensitive to violation of social expectations [Berthoz et al.,
2006; Petrini et al., 2014], suggesting its role in interpreting
the interconcept relations from a perspective of social
norms. A related account of the regions involved in the-
matic role processing emerges from studies of aphasia
[Thompson and Meltzer-Asscher, 2014].

Underlying Large-Scale Dimensions of Neural

Representation of Sentences and Their Brain

Locations

To determine the nature of the meaning dimensions of
the neural representation of the stimulus sentences at a
more molar level than NPSFs, a two-level hierarchical
factor analysis [Just et al., 2014] was applied to the activa-
tion data. There were four main factors or semantic
dimensions that emerged, that characterized the neural
organization of the sentence representation. These factors
can be interpreted as (1) people and social interactions, (2)
spatial and temporal settings, (3) actions (and affected objects),
and (4) feelings. These interpretations are based in large
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part on the NPSF semantic features and sentences that
were most associated with each factor (Supporting Infor-
mation). For example, the factor scores of the first factor
correlated with the semantic features of Person (0.63),
Communication (0.42), Intellectual (0.37), and so forth. Sen-
tences such as The young author spoke to the editor and The

judge met the mayor had high scores on this factor. Thus,
this factor was interpreted as representing people and
social interactions. The factor analysis also identifies the
voxels that have the highest factor loadings for each fac-
tor (Supporting Information, Table S3).

A condensed account of the relation between brain loca-
tions, large-scale semantic dimensions, and concept-level
NPSFs is depicted in Figure 4. Each main dimension is
described by a cloud of semantic features (Fig. 4B), which
are color-mapped to their corresponding brain locations
(Fig. 4A). Each NPSF tends to be correlated well with only
one of the dimensions (Fig. 4C).

This factor analysis interpretably organizes the main
meaning dimensions that characterize the 240 sentences in
this stimulus set, relates the emerging factors to the
NPSFs, and identifies the brain locations (factor-related
voxel clusters) that can be used to instantiate the mapping
between the semantic features (NPSFs) of concepts and the
resulting activation patterns.

DISCUSSION

The main contribution of this article is the integrated,
computational account of the relation between the seman-
tic content of a sentence and the brain activation pattern
evoked by the reading of the sentence. The integration
applies to several facets of the account. First, the model
integrates over the multiple concepts in a sentence to pre-
dict the activation of the sentence as a whole. Second, the
model also takes into consideration the thematic structure
that integrates the roles that the concepts play in the sen-
tence. Third, the model integrates over a wide range of
42 neurally plausible semantic features of different types,
from concrete perceptual and motor features of an object
(that can be thought of as embodied) to social and
abstract features of actions that have much less connec-
tion to concrete properties. Many previous studies have
reported the correspondence between only a handful of
features and brain activation patterns (e.g., Fernandino
et al., 2016; Just et al., 2010), but this study relates activa-
tion to many different types of semantic features. Fourth,
the model integrates the account of the activation attrib-
utable to the 42 concept-level features to the larger-scale
dimensions of meaning that emerged from the factor
analysis of the activation patterns of the sentences. In all
four senses, the current model provides a more inte-
grated, larger scale account of the brain activation associ-
ated with concept and sentence meaning. Moreover, it
provides a point of departure for future studies of the

neural representation of complex thoughts composed of
multiple components.

Although sentences are not merely the sum of their
parts, this study shows the extent to which a linear combi-
nation of thematically coded concept representations is
able to characterize the neural representation of simple
sentences. We note moreover, that the quantities being
added are estimates of word concept representations as
they occur in context, rather than in isolation. The addends
that were used to generate sentence representations may
be sentence-context-sensitive. Elsewhere, we demonstrate
systematic interactions or context effects among the NPSFs
of the concepts of a proposition [Just et al., 2017, under
review].

The NPSFs provide a basis of prediction of sentence
activation in terms of the co-activation of various brain
subsystems that have characteristic processing specializa-
tions. The NPSFs were developed with these specializa-
tions in mind, and they result in more accurate predictions
of sentence activation patterns than do feature sets derived
from language-based corpora. Moreover, the NPSF-based
characterization can be expanded to include additional
types of concepts and, if needed, additional neural sys-
tems. That is, this general approach has the potential of
extensibility to any number of concepts and simple senten-
ces constructed from the concepts.

The theory-driven NPSFs and the data-driven neural
dimensions (factors) derived from the factor analysis of
the sentence activations provide accounts at two levels of
granularity. The factors provide an account at a coarser,
higher level that specifies the general type of thought asso-
ciated with a simple sentence (e.g., the thought of an
action and its consequences). The NPSFs provide an
account at a finer level that specifies the properties of each
of the concepts in the proposition (e.g., a change of loca-
tion of an object). Together these two levels of account
suggest that the generativity of conceptual and proposi-
tional representation is enabled by the possible combinato-
rial space of these fundamental neural components and
their values.

The initial success of the modeling using neurally plau-
sible features suggests that the building blocks for con-
structing complex thoughts are shaped by neural systems
rather than by lexicographic considerations. This approach
predicts that the neural dimensions of concept representa-
tion might be universal across languages, as studies are
beginning to suggest [Yang et al., 2017]. In this perspec-
tive, the concepts in each language would be underpinned
by some subset of a universal set of NPSFs. The predictive
modeling of the neural signatures of new concepts in a
variety of dissimilar languages is a possible way to test
the hypotheses reflected by these neurally plausible
semantic features, in contrast to hypotheses based on mod-
els that are blind to neural capabilities.

This study demonstrates the possibility of modeling the
neural representation of semantic information beyond the
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single-word level by taking into consideration the role of a
concept in a proposition. Although only six roles present
in the current stimulus set were implemented in the
model, it could be expanded to incorporate more elabo-
rated thematic roles. Furthermore, computationally, the
model has the potential to identify neural signatures of
other aspects of sentence meaning, such as negation, tense,
syntactic roles of concepts, and so forth. Future studies
may use this approach to test more complex compositional
semantic representations.

Direction of Prediction

The regression modeling enables the prediction of brain
activity of a sentence and the comparably accurate pre-
diction of the sentence semantics. Given the main scien-
tific goal of understanding the process and representation
that the brain generates during sentence comprehension,
the corresponding direction is predicting the activation
from knowledge of the sentence, as was implemented in
previous studies [Huth et al., 2016; Mitchell et al., 2008;
Wehbe et al., 2014]. However, the other direction of
decoding semantics from activations provides a more
intuitive assessment of the model’s success, constituting a
“mindreading” capability. There is an immediate, human-
readable assessment of how unfaithful or faithful the pre-
diction is to the actual sentence. The two directions of
mapping serve different purposes, and their comparable
accuracies speak to the robustness of the general
approach.

In summary, the new findings and the accompanying
theoretical account provide an initial explanation of how
complex meaning is neurally represented. It presents an
initial mapping between brain activity and that part of the
mind that represents events and states as described by
sentences.

Large-Scale Semantic Dimensions and Brain

Locations Emerging From Factor Analysis of

Sentence Activation Patterns

The activation profiles of many regions identified in the
factor analysis (Fig. 4A and Supporting Information, Table
S3) are consistent with previous findings of the role of
these regions in semantic knowledge representation, such
as right anterior temporal lobe for semantic knowledge of
people [Gesierich et al., 2012], fusiform gyrus for repre-
senting objects [Martin, 2007], parahippocampal areas for
representing places [Epstein and Kanwisher, 1998], and so
forth. Moreover, the response profiles of several other
regions suggest that reading of simple sentences that
describe events and states also involve various non-
language-specific neural systems associated with the proc-
essing of social, affective, motor, and visual properties of
events, as discussed below.

People

One of the large-scale dimensions emerging from the
factor analysis assigned high scores to sentences describing
people and social interactions. The location of the largest
factor-related cluster (posterior cingulate cortex and the
adjacent precuneus region) is known for its role in epi-
sodic memory and being a signature of the default mode
network [Cavanna and Trimble, 2006; Gusnard and
Raichle, 2001], and it has also been found to activate dur-
ing social sharing of emotions versus processing emotion
alone [Wagner et al., 2015], and during thinking about
intentional versus physical causality [Ouden et al., 2005].
Similarly, the medial prefrontal cortex has been associated
with social and moral reasoning [Moll et al., 2005; Van
Overwalle, 2011]. The left superior frontal gyrus has been
associated with reasoning about social contracts [Fiddick
et al., 2005], social comparison [Dvash et al., 2010], and
found to be part of a theory of mind network [Wolf et al.,
2010]. In other words, processing social content during the
reading of sentences also involves a neural network for
social processing. This factor is correlated with the NPSFs
of person, communication, social norms, and social inter-
action, as shown in Figure 4C.

Places (spatial and temporal settings)

The sentences with high scores on this factor included
most of the sentences that described a scene rather than
an event (e.g., The restaurant was loud at night). The brain
regions associated with this factor include the parahippo-
campal area, and the posterior cingulate cortices, which
have been linked to viewing scenes and representing
semantic knowledge of shelters [Henderson et al., 2008;
Just et al., 2010]. The cluster in the right angular gyrus
has been associated with accurate temporal memory [Jen-
kins and Ranganath, 2010] and retrieval of learned ordi-
nal movement sequences [Bengtsson et al., 2004],
suggesting its role in the representation of time-related
concepts. This factor is correlated with the NPSFs of set-
ting, openness (nonenclosure), and shelter (enclosure), as
shown in Figure 4C.

Actions (and affected objects)

Sentences that included main verbs such as break or kick
had high scores on this factor. The cluster associated with
this factor in the middle frontal gyrus has been associated
with motor imagery [Szameitat et al., 2007] and retrieval
of visually or haptically encoded objects [Stock et al.,
2008]. This factor was correlated with the NPSFs of physi-
cal impact and change of location, as shown in Figure 4C.

Feelings

The right temporoparietal junction, which is known
for its role in representing belief of others [Saxe and
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Powell, 2006], has been found to activate for processing
fear-inducing pictures [Stark et al., 2007] and fearful
body expressions [Grèzes et al., 2007]. Moreover, this
region has been found to represent various emotions by
the appraisal-related features—such as expectedness,
fairness, and so forth—of affective events [Skerry and
Saxe, 2015]. The right inferior frontal gyrus has been
associated with recognizing visually presented objects
with negative valence [Kensinger and Schacter, 2007].
This factor was correlated with the NPSFs of high affec-
tive arousal and negative affective valence, as shown in
Figure 4C.

In summary, the factor analysis yields broad semantic
dimensions that characterize the events and states in the
240 stimulus sentences. The brain locations associated with
the each of the factors suggest that the brain structures
that are activated in the processing of various aspects of
everyday life events also encode the corresponding seman-
tic information. The factors can be construed as higher
order dimensions that subsume relevant NPSFs.

Generalizability Across Individuals

The generalizability of the findings is first demon-
strated when individual participants’ data are modeled
independently. The ability to predict and decode a new
sentence was present for every one of the seven partici-
pants with high accuracies. When individual participant’s
data are modeled, the reliability of the results is assessed
not in terms of the number of participants, but in terms
of the large number of stimulus items (240 sentences).
The model was further tested for its generality across
people: a model trained on the data of all but one partici-
pant is able to reliably predict the neural signature of the
left-out participant. This result indicates the generalizabil-
ity of the neural representations across individuals. The
fact that a small number of participants are sufficient to
build a cross-participant model suggests the consistency
of the effect.

Study Limitations and Implications

One limitation is that despite the large number of stimu-
lus sentences examined, the admixture of narrative and
descriptive sentences is limited in its structure and con-
tent. Sentences can provide far wider types of information
and they can have far wider syntactic forms than those
examined here. The set of NPSFs would certainly have to
be expanded to code all possible sentences, but perhaps
their number would asymptote at a few hundred. More
complex syntactic processing would evoke more activa-
tion, but the neural representations of the concepts
involved may not be affected by the syntactic complexity
of the sentence. Although the specific account provided by
the model is thus limited to the types of sentences exam-
ined in the study, the general principles may well be

extensible to the neural representation of concepts in any
sentence.

Another limitation is that the factor analysis produced
dimensions with reasonable interpretations, but the inter-
pretations were not put to a rigorous test. It should be
possible to independently assess the large-scale underlying
dimensions of a sentence and thus predict its factor scores
on the 4 factors. Furthermore, the outcome of the factor
analysis here was limited to the sample of 240 stimulus
sentences. It is likely that a much larger sample of sen-
tence types would yield additional factors, which could
also be independently assessed and tested for predictive
ability.

The study was also limited to the processing of visu-
ally presented sentences, and the neural signature at the
end of the reading of a sentence contained the represen-
tations of all of the component concepts in the sentence.
If the sentences were presented in the auditory modal-
ity, it is possible the neural signature at the end of the
listening to a sentence might not be the optimal decod-
ing window for all of the component concepts in the
sentence.

Despite its limitations, the study opens new avenues of
inquiry concerning the neural representation of complex
inputs. For example, the model described here can predict
the activation patterns evoked by the reading of
translation-equivalent sentences in another language [Yang
et al., 2017]. Not only can the model be extended to differ-
ent languages, but it may also extend to different media of
communication: the neural representation of a short video
depicting a simple event might also be characterized by
using the methods developed here. A broader avenue of
extension might be the characterization of the full neurally
based ontology that organizes information in a human
brain, regardless of the form of the input. The full poten-
tial of fMRI has yet to be realized as it is applied to the
representation of increasingly complex information.

SUMMARY

This study leads to an initial theoretical and computa-
tional account of the neural representation of the proposi-
tional content of event-describing and state-describing
sentences. The main contribution is the predictive bidirec-
tional mapping between the neurosemantic properties of
concepts and the neural signatures that characterize how
the brain represents events and states described by simple
sentences.

The novelty of the approach mainly lies in the mapping
that incorporates neurally driven properties of concepts
and sentences, the roles concepts play in a proposition,
and identification of an end-of-sentence neural signature
of the semantics of all the component concepts of the
proposition. The findings indicate the following: (1) The
neural representation of an event or state-describing prop-
osition entails brain subsystems specialized in representing
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particular semantic information that can be characterized
by a set of neurally plausible semantic features. (2) It is
possible to reliably predict sentence-level brain activity
from this set of specialized neural bases and the knowl-
edge of the semantic properties of the component words
of a sentence and their inter-relations. (3) It is also possible
to decode the semantic properties of the concepts in a sen-
tence from the observed activation patterns. (4) The neural
representation of the meaning of events and states is
largely common across individuals.
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Grèzes J, Pichon S, de Gelder B (2007): Perceiving fear in dynamic

body expressions. Neuroimage 35:959–967.
Gusnard DA, Raichle ME (2001): Searching for a baseline: Func-

tional imaging and the resting human brain. Nat Rev Neurosci

2:685–694.
Hastie T, Tibshirani R, Friedman J (2009): The Elements of Statis-

tical Learning: Data Mining, Inference, and Prediction.

Springer.
Hauk O, Johnsrude I, Pulvermu F (2004): Somatotopic representa-

tion of action words in human motor and premotor cortex.

Neuron 41:301–307.
Henderson JM, Larson CL, Zhu DC (2008): Full scenes produce

more activation than close-up scenes and scene-diagnostic
objects in parahippocampal and retrosplenial cortex: An fMRI

study. Brain Cogn 66:40–49.
Huth AG, de Heer WA, Griffiths TL, Theunissen FE, Gallant JL

(2016): Natural speech reveals the semantic maps that tile

human cerebral cortex. Nature 532:453–458.
Huth AG, Nishimoto S, Vu AT, Gallant JL (2012): A continuous

semantic space describes the representation of thousands of

object and action categories across the human brain. Neuron

76:1210–1224.
Iacoboni M, Lieberman MD, Knowlton BJ, Molnar-Szakacs I,

Moritz M, Throop CJ, Fiske AP (2004): Watching social interac-

tions produces dorsomedial prefrontal and medial parietal

BOLD fMRI signal increases compared to a resting baseline.

Neuroimage 21:1167–1173.
Jenkins LJ, Ranganath C (2010): Prefrontal and medial temporal

lobe activity at encoding predicts temporal context memory.

J Neurosci 30:15558–15565.
Just MA, Wang J, Cherkassky VL (2017): Neural representations

of the semantic content of individual simple sentences: Con-

cept combinatorics and sentence context effects. Neuroimage
(Under review).

Just MA, Cherkassky VL, Buchweitz A, Keller TA, Mitchell TM

(2014): Identifying autism from neural representations of social

interactions: Neurocognitive markers of autism. PLoS One 9:

e113879.

r Wang et al. r

r 4880 r



Just MA, Cherkassky VL, Aryal S, Mitchell TM (2010): A neurose-
mantic theory of concrete noun representation based on the
underlying brain codes. PLoS One 5:e8622.

Kanwisher N, Woods RP, Iacoboni M, Mazziotta JC (1997): A
locus in human extrastriate cortex for visual shape analysis.
J Cogn Neurosci 9:133–142.

Kassam KS, Markey AR, Cherkassky VL, Loewenstein G, Just MA
(2013): Identifying emotions on the basis of neural activation.
PLoS One 8:e66032.

Kensinger EA, Schacter DL (2007): Remembering the specific
visual details of presented objects: Neuroimaging evidence for
effects of emotion. Neuropsychologia 45:2951–2962.

Kranjec A, Chatterjee A (2010): Are temporal concepts embodied?
A challenge for cognitive neuroscience. Front Psychol 1:240.

Lai VT, Desai RH (2016): The grounding of temporal metaphors.
Cortex 76:43–50.

Landauer TK, Dumais ST (1997): A solution to Plato’s problem:
The latent semantic analysis theory of acquisition, induction,
and representation of knowledge. Psychol Rev 104:211–240.

Martin A (2007): The representation of object concepts in the
brain. Annu Rev Psychol 58:25–45.

Mason RA, Just MA (2016): Neural representations of physics con-
cepts. Psychol Sci 27:904–913.

Mitchell TM, Shinkareva SV, Carlson A, Chang K-M, Malave VL,
Mason RA, Just MA (2008): Predicting human brain activity
associated with the meanings of nouns. Science 320:1191–1195.

Moll J, Zahn R, de Oliveira-Souza R, Krueger F, Grafman J (2005):
The neural basis of human moral cognition. Nat Rev Neurosci
6:799–809.

Niles I, Pease A (2001): Towards a standard upper ontology. In:
Proceedings of the International Conference on Formal Ontol-
ogy in Information Systems - Volume 2001 (FOIS ’01). New
York, NY, USA: ACM. pp 2–9.

Oliver RT, Thompson-Schill SL (2003): Dorsal stream activation
during retrieval of object size and shape. Cogn Affect Behav
Neurosci 3:309–322.

Ouden HEM Den, Frith U, Frith C, Blakemore S (2005): Thinking
about intentions. Neuroimage 28:787–796.

Van Overwalle F (2011): A dissociation between social mentalizing
and general reasoning. Neuroimage 54:1589–1599.

Peelen MV, Caramazza A (2012): Conceptual object representa-
tions in human anterior temporal cortex. J Neurosci 32:
15728–15736.

Pennington J, Socher R, Manning CD (2014): Glove: Global Vec-
tors for Word Representation. In: EMNLP, Vol. 14. pp
1532–1543.

Pereira F, Detre G, Botvinick M (2011): Generating text from func-
tional brain images. Front Hum Neurosci 5:72.

Petrini K, Piwek L, Crabbe F, Pollick FE, Garrod S (2014): Look
at those two!: The precuneus role in unattended third-person
perspective of social interactions. Hum Brain Mapp 35:
5190–5203.

Pulverm€uller F, Hauk O, Nikulin VV, Ilmoniemi RJ (2005): Func-
tional links between motor and language systems. Eur J Neu-
rosci 21:793–797.

Saxe R, Powell LJ (2006): It’s the thought that counts: Specific
brain regions for one component of theory of mind. Psychol
Sci 17:692–699.

Shinkareva SV, Malave VL, Mason R. a, Mitchell TM, Just MA
(2011): Commonality of neural representations of words and
pictures. Neuroimage 54:2418–2425.

Skerry AE, Saxe R (2015): Neural representations of emotion are
organized around abstract event features. Curr Biol 25:
1945–1954.

Spitzer M, Fischbacher U, Herrnberger B, Gr€on G, Fehr E (2007): The
neural signature of social norm compliance. Neuron 56:185–196.

Stark R, Zimmermann M, Kagerer S, Schienle A, Walter B,
Weygandt M, Vaitl D (2007): Hemodynamic brain correlates of
disgust and fear ratings. Neuroimage 37:663–673.

Stock O, R€oder B, Burke M, Bien S, R€osler F (2008): Cortical acti-
vation patterns during long-term memory retrieval of visually
or haptically encoded objects and locations. J Cogn Neurosci
21:58–82.

Szameitat AJ, Shen S, Sterr A (2007): Effector-dependent activity
in the left dorsal premotor cortex in motor imagery. Eur J Neu-
rosci 26:3303–3308.

Thompson CK, Meltzer-Asscher A (2014): Neurocognitive mecha-
nisms of verb argument structure processing. In: Bachrach A,
Roy I, Stockall L, editors. Structuring the Argument: Multidis-
ciplinary Research on Verb Argument Structure. Amsterdam:
John Benjamins Publishing. pp 141–168.

Wagner U, Galli L, Schott BH, Wold A, van der Schalk J, Manstead
ASR, Scherer K, Walter H (2015): Beautiful friendship: Social shar-
ing of emotions improves subjective feelings and activates the
neural reward circuitry. Soc Cogn Affect Neurosci 10:801–808.

Wang J, Baucom LB, Shinkareva SV (2013): Decoding abstract and
concrete concept representations based on single-trial fMRI
data. Hum Brain Mapp 34:1133–1147.

Wang J, Cherkassky VL, Yang Y, Chang KK, Vargas R, Diana N,
Just MA (2016): Identifying thematic roles from neural repre-
sentations measured by functional magnetic resonance imag-
ing. Cogn Neuropsychol 1–8.

Wehbe L, Murphy B, Talukdar P, Fyshe A, Ramdas A, Mitchell T
(2014): Simultaneously uncovering the patterns of brain
regions involved in different story reading subprocesses. PLoS
One 9:e112575.

Wolf I, Dziobek I, Heekeren HR (2010): Neural correlates of social
cognition in naturalistic settings: A model-free analysis
approach. Neuroimage 49:894–904.

Yang Y, Wang J, Bailer C, Cherkassky V, Just MA (2017): Com-
monality of neural representations of sentences across lan-
guages: Predicting brain activation during Portuguese sentence
comprehension using an English-based model of brain func-
tion. Neuroimage 146:658–666.

r Modeling Neural Representations of Events and States r

r 4881 r



 

1 

 

Supporting Information 

 

Predicting the brain activation pattern associated with the propositional content of 

a sentence: modeling neural representations of events and states 

 

Jing Wang 
a
, Vladimir L. Cherkassky 

a
, Marcel Adam Just 

a, 1
 

a 
Center for Cognitive Brain Imaging, Psychology Department, Carnegie Mellon University, 

Pittsburgh, PA 15213, USA.  

1
 To whom correspondence should be addressed.  email: just@cmu.edu 

 

 

  



 

2 

 

Methods details for main study  

Stimulus presentation parameters. On each day of a one-hour scan, participants read 60 of 

the sentences that were presented a total of 4 times in 4 blocks of randomly permuted orders of 

the sentences. The stimulus onset asynchrony was 12 seconds for each sentence, composed of a 

mean sentence presentation time of 1.4 s padded out with a blank interval to a total of 5 s  

followed by a 7 s fixation interval. A sentence was presented one phrase at a time, with phrases 

cumulating from left to right on the screen. The cumulating phrase-by-phrase sentence display 

protocol was motivated by the patterns of eye fixations during the reading of texts [Just and 

Carpenter, 1980]. The presentation duration of each phrase was intended to approximate the 

mean gaze duration on a phrase of that length. Each phrase contained no more than one of the 

242 non-adjective content words or the word was. Other words, such as the, at, in, etc. were 

included in a phrase when they preceded one of the content words. The presentation duration of 

each phrase was computed as (300 ms × Number of “words”) + (16 ms × Number of letters), 

where “words” referred only to the 242 content words and the word was. Additionally, the word 

was was presented for 200 ms rather than 300 ms. The counting of letters included all of the 

words except the. When an adjective preceded a noun, that adjective and a possible determiner 

were presented before the noun, and remained on the screen while the noun was presented. As 

the participants read each phrase, they were to think of the intrinsic properties of the referent of 

that phrase, and integrate the referent into the context of the evolving sentence. The goal of this 

instruction was to encourage engagement and attention of the participant. The participant was 

instructed to think of the same properties each time the sentence was presented. After the last 

phrase of the sentence had been presented, a blank interval was presented to pad out the total 

duration of the sentence presentation to 5000 ms, during which the participants were allowed to 
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finish their thoughts on the sentence. The blank interval was followed by a 7 sec fixation cross 

(the letter X) presented in the center of the screen, during the presentation of which the 

participant were instructed to relax and clear their mind.  

Long fixation periods to obtain baseline activation measures. At the beginning and end of 

each sentence presentation block, a fixation cross (the letter X) was presented for 17 seconds 

during which participants were asked to relax and clear their mind.  

Before the actual experiment, participants were taught to perform the task in a mock scanner 

for 6 minutes using stimulus materials with no overlap with the test sentences. 

Selection of features/voxels for regression modeling. From within the regions specified by 

the factor analysis, voxels were selected for training and prediction based on their stability. From 

each of the factor-related regions, 5 to 100 voxels with the highest stability were selected, and 

the predictions for these voxels were compared to the test data. Voxel stability refers to 

responding similarly to the set of words in the training set across multiple presentations of the set, 

i.e. displaying a repeatable semantic tuning curve. The number of selected voxels in each cluster 

was determined by: 

𝐾(𝑐) =

{
 
 

 
 

5, 𝑐 ≤ 50
10, 50 < 𝑐 ≤ 150
20, 150 < 𝑐 ≤ 300
50, 300 < 𝑐 ≤ 600
100, 𝑐 > 600

 

where 𝐾 was the number of selected voxels and 𝑐 was the number of voxels in a cluster. 
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The voxel selection was based on only the training data in each cross validation fold and 

then applied to the test data. 

Predicting the NPSF semantic features of a sentence from its neural activity patterns 

(meaning-predicting model) 

The same theoretical framework that was implemented in the activation-predicting model 

can also be applied in the reverse direction, to predict (decode) the underlying semantic features 

of a given fMRI image obtained during the comprehension of a sentence. Once trained, the 

model can predict the semantic feature values of an unknown sentence based on its observed 

fMRI images. The accuracy measure was the normalized rank of the similarity of the test 

sentence’s actual NPSF feature vector to its predicted vector among the 240 alternatives, where 

the actual features of a sentence were the mean of the human-coded feature values of its content 

words. The rank accuracy was computed based on the relative similarity of the predicted feature 

vector to the actual vector of the test sentence, among the 240 alternatives. 

Ancillary study on decoding thematic roles in reversible sentences 

Experimental paradigm and procedure. Functional images were acquired while participants 

read reversible Agent-verb-patient sentences and judged the consistency of the events described 

by the sentence and a following video clip. The main condition consisted of 4 pairs of reversible 

sentences, where 2 animal characters (monkey or rabbit) were the agents or patients, and 4 

actions (kick, pat, punch, and push) were the main verb. To prevent participants from encoding 

the thematic role of only one animal and inferring the identity of the other animal, a third filler 

character (wolf) performed and received 2 actions from the other animals. On each trial, a 

sentence was presented one word at a time, with words accumulating on the screen. The word 
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onset asynchrony within a sentence was 400 ms, and the sentence presentation was followed by a 

3800 ms blank interval, followed by a 4-s fixation cross (the letter X).  

To require participants to encode the thematic role information, they were asked to judge 

whether the sentence matched or mismatched an immediately subsequent event depicted in a 3-s 

animation video clip (programmed using Alice 3, alice.org). The video depicted one animal 

character performing a physical action on another animal character. Participants indicated their 

response by pressing a same or different button on a response apparatus during a 2-s response 

period. Finally a 6-s fixation period was presented at which point the participants were asked to 

relax and clear their mind. The sentences were presented 4 times in 4 presentation blocks. The 

left-right positions of the characters in the videos were balanced across the presentations. In one 

of the four presentations of each sentence (distributed across the blocks), the event in the video 

was inconsistent with the sentence. In half of the cases in which the sentence and videos were 

inconsistent with each other, the sentence mis-stated the agent-patient relation; for the other half, 

the sentence used an incorrect verb. Additionally there were 6 blocks of 17-s fixation periods 

distributed over the scans to obtain the baseline measures, as in the main experiment. 

Participants. Five healthy, right-handed native English-speaking adults (3 females) from the 

Carnegie Mellon community participated and gave written informed consent approved by the 

Carnegie Mellon Institutional Review Boards. 

fMRI imaging protocol and data preprocessing procedures were the same as the main 

experiment.  

Decoding thematic relations. The analysis assessed the degree to which the thematic role 

associated with each character in the sentence could be decoded. In each cross-validation fold, 

two logistic regression classifiers, one per character, were trained to associate the fMRI 
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signatures of the sentence with one of the two agent-patient role assignments. The training data 

of a classifier were the activation patterns evoked by events that involved the given character in 

the role of either the agent or the patient. To ensure that the decodability was not due to low level 

visual properties, activation data in the occipital lobe, defined by Automated Anatomical 

Labeling [Tzourio-Mazoyer et al., 2002], were excluded from consideration. Posthoc 

examination of the voxel locations showed that the selected voxels were not located in visual 

perceptual areas in the ventral temporal gyrus (Figure S2). Voxels used to train the classifier 

were 120 non-occipital voxels with the most stable activation profiles over the sentences in the 

training set. The stability of a voxel was measured by the mean of the pairwise correlations 

between its activation profiles over the sentences across the 4 presentations. The locations of the 

stable voxels used in the thematic role decoding were aggregated across participants. The 

clusters with more than 5 voxels are shown in Figure S2.The trained classifier for a character 

was applied to the activation patterns of the left-out test sentence to predict the thematic role of 

that character. The significance of the accuracy being different from chance level was tested 

against a null distribution generated by an 10000-iteration random permutation. 

Supporting results 

Underlying large-scale dimensions of neural representation of sentence contents and their 

brain locations 

We briefly describe each factor’s associated locations and semantic features. The people 

factor assigned high factor scores to sentences that describe people and their interactions (e.g. 

The young author spoke to the editor, The judge met the mayor). The scores of this factor had a 

positive correlation with NPSFs that coded Person (0.63), Communication (0.42), Intellectual 

(0.37), etc. (Figure 4C). The brain locations associated with this factor included posterior 
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cingulate cortex, the right superior orbitofrontal cortex, and other frontal and bilateral temporal 

areas. 

The places factor underpinned the activation of sentences describing scenes or buildings (e.g. 

The bridge survived the flood, The student walked along the long hall). The factor scores were 

positively correlated with NPSFs that coded Settings (0.51), Unenclosed (0.34), etc., and the 

brain locations included typical shelter factor locations [Just et al., 2010] – bilateral 

parahippocampal place areas, precuneus, and middle occipital gyri. 

The actions (and affected objects) factor underpinned sentences that included transitive 

verbs such as break, kick (e.g. The child broke the glass in the restaurant) and low scores for less 

active and physical events, associated with verbs like interview, leave, and work. The factor 

scores were positively correlated with NPSFs that coded Physical impact (0.42) and Change of 

location (0.32), and the corresponding brain locations were mostly left-lateralized and included 

posterior temporal and inferior parietal regions. 

The feelings factor underpinned sentences that conveyed information about emotions, 

particularly negative valence, assigning high factor scores to sentences containing words such as 

fear, danger, shout, survive, angry, criminal. The factor scores were positively correlated with 

NPSFs that coded High affective arousal (0.35), Negative affective valence (0.32), etc. The 

corresponding brain locations included the right TPJ. 

In addition, the factor analysis also identified a non-semantic, perceptual factor reflecting 

sentence length, which did not contribute to the sentence prediction. The correlation between the 

factor scores for this factor and number of letters in the sentence was 0.76. The associated brain 

regions include bilateral occipital poles and fusiform gyri, areas previously associated with word 

length effects [Just et al., 2010]. The sentence prediction accuracy did not benefit from the 
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sentence length factor. When all the brain regions associated with this factor were removed from 

the mapping performed on the aggregated data, the mean prediction accuracy numerically 

increased from 0.86 to 0.87, and the number of sentences with accuracy of 1 increased from 16 

to 18. Thus, it was the characterization of the semantic properties of sentences that drove the 

accurate prediction. 

Predicting brain activation patterns of individual word concepts in sentence contexts  

A key stepping stone to successful prediction of the sentence activation was the accurate 

prediction of the activation patterns associated with the individual word concepts in the sentence. 

An assessment of this approach was performed by comparing the predicted activation pattern for 

a concept with the mean image of that concept across sentences. Specifically, the observed 

activation pattern for each of the 242 words was estimated as the mean image of all the sentences 

containing that word. Each word appeared on average in 3.3 sentences (range = 1 - 7). There 

were 45 words that appeared only in a single sentence.  

 Each of the observed word images was left out of the training of the regression model, and 

was then used for testing in a cross-validation fold. The regression model was trained to map 

from the NPSFs of the words to the estimated brain activation patterns in the same approach as 

the main analysis. The activation patterns of all candidate words, including the target word, were 

then predicted based on their NPSFs, and compared to the left-out test word image. 

The mean rank accuracy of prediction of the word concept was 0.75 across participants, with 

every participant being well above chance level (critical value at p = 10
-5

 level of being 

significantly different from chance was 0.58, determined by random permutation tests). This 

result establishes the utility of estimating single concept neural representations embedded in a 

sentence by averaging over and cancelling out the differences in contexts, and confirmed the 
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model’s capability of prediction when it was trained in the absence of neural data associated with 

the prediction targets. The prediction accuracies for different semantic categories of concepts 

were comparable (animal: .86, event: .85, human: .80, setting: .77, object: .72, attribute: .71, 

verb: .70), suggesting that the sentence prediction accuracy was not driven by any single 

category of concept.  

Temporal coincidence of sentence concept representations  

To determine the optimal temporal window of the fMRI signal within which to decode the 

content of a sentence, several windows with different starting positions and a width of 1 s of data 

were examined. The sentences took on average 1.4 s to be presented. The decoding accuracy first 

became substantial at 7
 
sec after sentence onset and continued to be substantial until 9 s after 

sentence onset, peaking at 8 s. The optimal temporal window in terms of both its starting position 

and width was very similar for the words regardless of their serial position within the sentence 

(Figure S1). These results indicate that the neural representations of all the content words in a 

sentence are co-incident in time in the fMRI signal, occurring after the entire sentence has been 

processed. 
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Table S1. The 240 Stimulus Sentences (from [Glasgow et al., 2016]) 

 

1 The family was happy. 

2 The politician visited the family. 

3 The family played at the beach. 

4 The parent bought the magazine. 

5 The child broke the glass in the restaurant. 

6 The parent shouted at the child. 

7 The happy couple visited the embassy. 

8 The wealthy couple left the theater. 

9 The parent visited the school. 

10 The happy child found the dime. 

11 The child gave the flower to the artist. 

12 The soldier crossed the field. 

13 The commander listened to the soldier. 

14 The horse walked through the green field. 

15 The girl saw a horse in the park. 

16 The engineer walked in the peaceful park. 

17 The flower was yellow. 

18 The yellow bird flew over the field. 

19 The old doctor walked through the hospital. 

20 The wealthy author walked into the office. 

21 The dog broke the television. 

22 The street was empty at night. 

23 The street was dark. 

24 The banker watched the peaceful protest. 

25 The voter went to the protest. 

26 The protest was loud. 

27 The politician watched the trial. 

28 The reporter spoke to the loud mob. 

29 The mayor negotiated with the mob. 

30 The mob was dangerous. 

31 The wealthy politician liked coffee. 

32 The young author spoke to the editor. 

33 The scientist spoke to the student. 

34 The scientist watched the duck. 

35 The witness went to the trial. 

36 The witness spoke to the lawyer. 

37 The witness shouted during the trial. 

38 The jury watched the witness. 

39 The victim feared the criminal. 

40 The engineer gave a book to the student. 
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41 The magazine was in the car. 

42 The diplomat negotiated at the embassy. 

43 The diplomat shouted at the soldier. 

44 The mayor listened to the voter. 

45 The famous diplomat left the hospital. 

46 The patient survived. 

47 The tired patient slept in the dark hospital. 

48 The author kicked the desk. 

49 The tourist went to the restaurant. 

50 The woman left the restaurant after the storm. 

51 The restaurant was loud at night. 

52 The artist liked chicken. 

53 The diplomat was wealthy. 

54 The mayor dropped the glass. 

55 The injured horse slept at night. 

56 The young girl played soccer. 

57 The girl saw the small bird. 

58 The tourist found a bird in the theater. 

59 The school was famous. 

60 The magazine was yellow. 

61 The accident damaged the yellow car. 

62 The activist listened to the tired victim. 

63 The aggressive team took the baseball. 

64 The angry child threw the book. 

65 The artist kicked the football. 

66 The banker bought the expensive boat. 

67 The banker drank cold water. 

68 The banker was injured in the accident. 

69 The baseball broke the window. 

70 The baseball was in the office. 

71 The beach was empty. 

72 The bridge survived the flood. 

73 The businessman watched soccer. 

74 The car approached the river. 

75 The cloud was white. 

76 The computer was new. 

77 The computer was on the desk. 

78 The couple read on the beach. 

79 The criminal put the book on the desk. 

80 The criminal wanted cash. 

81 The dangerous criminal stole the television. 

82 The dime was new. 

83 The doctor bought the used boat. 
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84 The doctor stole the book. 

85 The dog drank water. 

86 The dog ran in the park. 

87 The door was blue. 

88 The driver wanted cold tea. 

89 The duck was aggressive. 

90 The editor drank tea at dinner. 

91 The feather was blue. 

92 The flood was dangerous. 

93 The green duck slept under the tree. 

94 The judge lost the dime. 

95 The lawyer was friendly. 

96 The man lost the ticket to soccer. 

97 The medicine was on the table. 

98 The old man threw the stone into the lake. 

99 The policeman interviewed the young victim. 

100 The reporter ate at the new restaurant. 

101 The reporter interviewed the dangerous terrorist. 

102 The school was empty during the summer. 

103 The small church was near the school. 

104 The soldier kicked the door. 

105 The storm was powerful. 

106 The teacher used the computer. 

107 The teacher visited the beach in summer. 

108 The teacher worked at the new school. 

109 The team celebrated. 

110 The team lost the football in the forest. 

111 The team played soccer in spring. 

112 The terrorist stole the car. 

113 The ticket was on the red desk. 

114 The tourist was friendly. 

115 The tree was green. 

116 The used book was on the table. 

117 The white feather was under the tree. 

118 The yellow dog approached the friendly teacher. 

119 The young policeman walked to the theater. 

120 The young student read at the desk. 

121 The activist dropped the new cellphone. 

122 The activist marched at the trial. 

123 The angry activist broke the chair. 

124 The angry lawyer left the office. 

125 The army built the small hospital. 

126 The artist drew the river. 
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127 The artist found the red ball. 

128 The artist hiked along the mountain. 

129 The artist shouted in the hotel. 

130 The author interviewed the scientist after the flood. 

131 The big horse drank from the lake. 

132 The bird was red. 

133 The boat crossed the small lake. 

134 The boy threw the baseball over the fence. 

135 The cellphone was black. 

136 The chicken was expensive at the restaurant. 

137 The cloud blocked the sun. 

138 The commander ate chicken at dinner. 

139 The commander negotiated with the council. 

140 The commander opened the heavy door. 

141 The council feared the protest. 

142 The council read the agreement. 

143 The diplomat bought the aggressive dog. 

144 The dog ate the egg. 

145 The duck flew. 

146 The editor carried the magazine to the meeting. 

147 The editor gave cash to the driver. 

148 The expensive camera was in the lab. 

149 The farmer liked soccer. 

150 The fish lived in the river. 

151 The flood damaged the hospital. 

152 The girl dropped the shiny dime. 

153 The green car crossed the bridge. 

154 The happy girl played in the forest. 

155 The horse kicked the fence. 

156 The hurricane damaged the boat. 

157 The jury listened to the famous businessman. 

158 The lawyer drank coffee. 

159 The man saw the dead mouse. 

160 The man saw the fish in the river. 

161 The mob approached the embassy. 

162 The old farmer ate at the expensive hotel. 

163 The old judge saw the dark cloud. 

164 The parent took the cellphone. 

165 The policeman arrested the angry driver. 

166 The red plane flew through the cloud. 

167 The reporter met the angry doctor. 

168 The small boy feared the storm. 

169 The soldier arrested the injured activist. 



 

14 

 

170 The soldier delivered the medicine during the flood. 

171 The storm ended during the morning. 

172 The teacher broke the small camera. 

173 The tourist ate bread on vacation. 

174 The trial ended in spring. 

175 The vacation was peaceful. 

176 The wealthy farmer fed the horse. 

177 The woman bought medicine at the store. 

178 The woman took the flower from the field. 

179 The worker fixed the door at the church. 

180 The young engineer worked in the office. 

181 The accident destroyed the empty lab. 

182 The actor gave the football to the team. 

183 The army marched past the school. 

184 The bicycle blocked the green door. 

185 The bird landed on the bridge. 

186 The boy held the football. 

187 The boy kicked the stone along the street. 

188 The businessman laughed in the theater. 

189 The businessman lost the computer at the airport. 

190 The businessman slept on the expensive bed. 

191 The child held the soft feather. 

192 The clever scientist worked at the lab. 

193 The coffee was hot. 

194 The company delivered the computer. 

195 The corn grew in spring. 

196 The couple laughed at dinner. 

197 The couple planned the vacation. 

198 The doctor helped the injured policeman. 

199 The duck lived at the lake. 

200 The dusty feather landed on the highway. 

201 The editor damaged the bicycle. 

202 The egg was blue. 

203 The engineer built the computer. 

204 The family survived the powerful hurricane. 

205 The glass was cold. 

206 The guard opened the window. 

207 The guard slept near the door. 

208 The journalist interviewed the judge. 

209 The judge met the mayor. 

210 The judge stayed at the hotel during the vacation. 

211 The lonely patient listened to the loud television. 

212 The man read the newspaper in church. 
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213 The minister found cash at the airport. 

214 The minister lost the spiritual magazine. 

215 The minister spoke to the injured patient. 

216 The minister visited the prison. 

217 The mob damaged the hotel. 

218 The mouse ran into the forest. 

219 The parent watched the sick child. 

220 The park was empty in winter. 

221 The patient put the medicine in the cabinet. 

222 The pilot was friendly. 

223 The policeman read the newspaper. 

224 The politician celebrated at the hotel. 

225 The priest approached the lonely family. 

226 The red pencil was on the desk. 

227 The reporter interviewed the politician during the debate. 

228 The reporter wrote about the trial. 

229 The storm destroyed the theater. 

230 The student planned the protest. 

231 The student walked along the long hall. 

232 The summer was hot. 

233 The tired jury left the court. 

234 The tired lawyer visited the island. 

235 The tourist hiked through the forest. 

236 The tree grew in the park. 

237 The voter read about the election. 

238 The wealthy family celebrated at the party. 

239 The window was dusty. 

240 The woman helped the sick tourist. 
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Table S2.   Mean rank accuracy of identifying 240 sentences using the activation-predicting 

model or the meaning-predicting model at a group level (with data aggregated over participants) 

and for individual participants. The rank accuracies and number of perfectly predicted sentences 

of all participants were significantly above chance level. The critical value of the individual rank 

accuracy being significantly different from chance level is 0.54 at p = 0.05 level, and 0.59 at p = 

0.000001 level; the critical value of the number of items being predicted with 100% accuracy is 

1.99 at p = 0.05 level and 7.99 at p = 0.000001 level (determined by 10
7
-iteration random 

permutation tests). 

 

Activation-predicting Model 

 

Meaning-predicting Model 

 

Accuracy 
Number of perfectly 

predicted sentences  
Accuracy 

Number of perfectly 

predicted sentences 

Data aggregated over 

participants 
0.86 16 

 
0.87 15 

Individual participants 
     

1 0.84 19 
 

0.87 19 

2 0.84 16 
 

0.84 10 

3 0.83 17 
 

0.84 7 

4 0.81 15 
 

0.83 8 

5 0.81 12 
 

0.80 2 

6 0.81 8 
 

0.84 11 

7 0.79 12 
 

0.80 3 

Mean 0.82 14.14 
 

0.83 8.57 
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Table S3. Brain locations associated with the four large-scale semantic factors identified by 

factor analysis. Clusters with at least 10 voxels are shown on the brain template in Figure 4A.  

Factor Center location 
MNI coordinates Radius 

(mm) 
Number of 

voxels x y z 

People and 

social 

interactions 

PCC/precuneus -1 -56 30 10.5 212 

L superior frontal gyrus -15 59 25 7.1 22 

Superior medial frontal gyrus 5 61 20 6.7 39 

Superior medial frontal gyrus 9 53 34 6.3 17 

R superior orbitofrontal cortex 26 59 -3 5.6 20 

L middle temporal gyrus -48 -68 20 8.6 51 

R middle temporal gyrus 51 -61 19 7.9 88 

R ATL 57 -4 -22 5 27 

Temporal_Mid_L -61 -18 -21 4.2 7 

Frontal_Sup_R 17 36 45 3.2 7 

Frontal_Mid_L -30 30 45 4.2 6 

Temporal_Mid_R 62 -14 -21 4.4 5 

Temporal_Sup_L -49 -46 16 3.6 5 

Occipital_Sup_L -26 -74 38 4 5 

Frontal_Mid_L -31 19 54 3.9 5 

Spatial and 

temporal 

settings  

L PPA -28 -41 -16 7.7 65 

R PPA 29 -36 -20 6 52 

L PCC -12 -57 16 7.8 46 

R PCC 14 -54 15 8.7 76 

L middle occipital gyrus -39 -81 29 7.3 34 

R middle occipital gyrus 41 -80 31 5.6 14 

R angular gyrus 45 -63 31 5.3 11 

Precuneus -6 -71 55 6 9 

Temporal_Mid_R 57 -2 -22 3.9 6 
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Table S3 continued 

 

 

 

Note: PCC = posterior cingulate cortex, ATL = anterior temporal lobe, PPA = parahippocampal 

place area, TPJ = temporoparietal junction 

 

  

Actions 

and objects 

L middle frontal gyrus -37 30 27 7.2 11 

L supramarginal gyrus -60 -30 32 8.4 17 

L inferior parietal gyrus -52 -39 47 7.9 14 

R angular gyrus 45 -73 36 7.8 16 

L middle temporal gyrus -54 -60 2 10.8 61 

L middle occipital gyrus -35 -79 30 8.2 17 

Right IFG 46 37 7 4.7 14 

Fusiform_R 40 -14 -35 4.3 10 

Precentral_L -52 10 32 3.8 5 

Fusiform_L -42 -53 -19 3.3 5 

Frontal_Inf_Orb_L -31 32 -18 3.7 5 

Parietal_Inf_L -44 -37 36 4.1 5 

Feelings 
R TPJ 54 -47 12 7.2 17 

Frontal_Inf_Tri_R 46 33 7 3.7 7 
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Figure S1. The accuracies of predicting activation patterns of words that occurred at four 

different serial positions in the sentence (4 colored curves) all peaked in the same temporal 

decoding window. 
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Figure S2. Brain locations that encode thematic role information. The circled clusters in the 

precuneus (MNI coordinates: 12, -54, 46), right amygdala (22, -3, -15), right precentral gyrus (41, 

-15, 52) and left ATL (-40, 6, -38) are spatially distinct from those identified in the main study 

(Table S3).  

 

  



 

21 

 

References 

Glasgow K, Roos M, Haufler A, Chevillet M, Wolmetz M (2016): Evaluating semantic models 

with word-sentence relatedness. arXiv: 160307253 [csCL]. 

Just MA, Carpenter PA (1980): A theory of reading: from eye fixations to comprehension. 

Psychol Rev 87:329–354. 

Just MA, Cherkassky VL, Aryal S, Mitchell TM (2010): A neurosemantic theory of concrete 

noun representation based on the underlying brain codes. Article. PLoS One 5:e8622. 

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, 

Joliot M (2002): Automated anatomical labeling of activations in SPM using a macroscopic 

anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 289:273–289. 

 

 

 




