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Abstract

Recent research suggests there is a neural organization for representing abstract con-

cepts that is common across English speakers. To investigate the possible role of lan-

guage on the representation of abstract concepts, multivariate pattern analytic

(MVPA) techniques were applied to fMRI data to compare the neural representations

of 28 individual abstract concepts between native English and Mandarin speakers.

Factor analyses of the activation patterns of the 28 abstract concepts from both lan-

guages characterized this commonality in terms of a set of four underlying neuro-

semantic dimensions, indicating the degree to which a concept is verbally represented,

internal to the person, contains social content, and is rule-based. These common

semantic dimensions (factors) underlying the 28 concepts provided a sufficient basis

for reliably identifying the individual abstract concepts from their neural signature in

the other language with a mean rank accuracy of 0.65 (p < .001). Although the neural

dimensions used for representing abstract concepts are common across languages,

differences in the meaning of some individual concepts can be accommodated in

terms of differential salience of particular dimensions. These semantic dimensions

constitute a set of neurocognitive resources for abstract concept representations

within a larger set of regions responsible for general semantic processing.
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1 | INTRODUCTION

Although the neural representations of concepts are generally similar

across speakers of the same language, the extent of this similarity

across languages has yet to be measured. When the concept corre-

sponds to a concrete entity, such as an apple, the common basis in

large part consists of the perceptual and physical properties of the ref-

erent (Just, Cherkassky, Aryal, & Mitchell, 2010). Recent studies using

multivariate pattern analyses (MVPA) and machine learning techniques

have reported cross-language decoding of fMRI signatures, namely,

across English and Portuguese nouns, (Buchweitz, Shinkareva, Mason,

Mitchell, & Just, 2012), across English, Portuguese, and Mandarin sen-

tences (Yang, Wang, Bailer, Cherkassky, & Just, 2017a, 2017b) as well

as English, Mandarin, and Farsi stories (Dehghani et al., 2017).

The shared representational basis of abstract concepts such as

ethics and causality are more difficult to identify. Given that abstract

concepts do not often reflect a shared experience of the physical

world, require schooling to acquire (Mason & Just, 2016), and are built

on existing conceptual knowledge, there is reason to question the

degree of commonality across languages in the meaning representa-

tions underlying abstract concept knowledge. Some theories have

suggested that the psychological representations of abstract concepts,
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such as time, are dependent on cultural and language differences

(Fuhrman et al., 2011; Lai & Boroditsky, 2013) while other theories

suggest that there are culturally-invariant neural activation patterns

for concepts across brain regions (Han & Northoff, 2008). Although

abstract concepts have been shown to be represented similarly across

speakers within a given language (Vargas & Just, 2020), it has yet to

be measured whether or not this common representation extends

across languages.

Among English speakers, the neural activation patterns for

abstract concepts have been shown to be underpinned by a set of

three neurosemantic dimensions, namely the degree to which a con-

cept is verbally represented; whether a concept uses the self as an

internal reference; and whether the concept contains social content.

Furthermore, in English, the neural representation of abstract con-

cepts has been shown to involve regions associated with motor and

visuospatial functioning (Dreyer & Pulvermüller, 2018; Harpaintner,

Sim, Trumpp, Ulrich, & Kiefer, 2020). Other research has supported

the emphasis of verbal and linguistic-based processing of abstract

concepts in Mandarin speakers (Wang et al., 2018). The current study

compared the neural representations of the same abstract concepts in

English and Mandarin to illuminate commonalities and possible differ-

ences between languages in the representation of abstract concepts.

This study had two main aims: First, to test whether a shared set

of semantic dimensions underlie the neural activation patterns of

abstract concepts across English and Mandarin speakers and to deter-

mine how well the observed organization of abstract concepts along

these dimensions corresponds to behavioral judgments of concept

meaning. Second, to identify differences in the representation of indi-

vidual concepts despite a common underlying structure. Taken

together, this study aims to determine whether there is a common

neural basis for representing abstract concept information across lan-

guages while providing a framework for identifying language-specific

differences in the meaning of individual abstract concepts.

2 | MATERIALS AND METHODS

2.1 | Participants

Ten right-handed native Mandarin speaking adults (age range from

18 to 26, M = 20.2; six females) and 10 right-handed native English-

speaking adults (sample previously reported in Vargas & Just, 2020)

age range from 20 to 38, M = 25.9; seven females;) from the Carnegie

Mellon community participated in a 45-min fMRI scanning session. To

mitigate cross-cultural familiarity, the group of native Mandarin

speakers included only those who had spent less than 1 year living

outside of the Peoples Republic of China. Informed consent was

obtained from all participants in accordance with the Carnegie Mellon

Institutional Review Board. Data from two Mandarin speakers and

one English speaker were excluded due to the participant falling

asleep during the scan. An additional Mandarin speaking participant's

data was excluded due to their misunderstanding of instructions,

resulting in data analysis of seven Mandarin speakers and nine English

speakers.

2.2 | Experimental paradigm

For both language groups, the stimuli were 28 words referring to

abstract concepts distributed among seven categories. Although the

category labels were never mentioned nor presented to participants,

they are listed here in parentheses for expository purposes, preceding

the actual stimuli: (social): gossip, intimidation, forgiveness, and compli-

ment; (emotion): happiness, sadness, anger, and pride; (law): contract,

ethics, crime, and exoneration; (metaphysics): causality, consciousness,

truth, and necessity; (religiosity): deity, spirituality, sacrilege, and faith;

(mathematics): subtraction, equality, probability, and multiplication; (sci-

entific): gravity, force, heat, and acceleration. The set of concepts was

translated from English to Mandarin by two independent native Man-

darin speakers and then back-translated to English by a separate inde-

pendent Mandarin speaker. The translations were then verified by a

fourth independent Mandarin–English bilingual to ensure the meaning

best matches the original English concept (see Table 1 for Mandarin

translations).

Concept abstractness ratings were compared across the lan-

guages. English abstractness ratings were obtained from the

Brysbaert, Warriner, and Kuperman (2014) database while Mandarin

ratings were obtained from MELD-SCH (Xu & Li, 2020). Because the

concepts in the MELD-SCH were limited to words with two charac-

ters, abstractness comparisons were restricted to the 18 concepts

present in both databases (18 of 28 concepts), r(16) = .64, p < .01.

Word frequencies were compared across languages using English

TABLE 1 Table of all 28 abstract concepts stimuli presented to English and Mandarin speaking participants

Math Scientific Social Emotion Law Metaphysical Religiosity

Subtraction

(减法)

Gravity

(引力)

Gossip

(绯闻)

Happiness

(幸福)

Contract

(合同)

Causality

(因果关系)

Deity

(神明)

Equality

(相等)

Force

(力)

Intimidation

(恐吓)

Sadness

(悲伤)

Ethics

(道德)

Consciousness

(意识)

Spirituality

(灵性)

Probability

(概率)

Heat

(热能)

Forgiveness

(谅解)

Anger

(愤怒)

Crime

(罪行)

Truth

(真理)

Sacrilege

(亵渎)

Multiplication

(乘法)

Acceleration

(加速度)

Compliment

(赞美)

Pride

(自豪)

Exoneration

(免罪)

Necessity

(必要性)

Faith

(信仰)

Note: Stimuli were presented in the participant's native languages.
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(Brysbaert et al., 2014) and Mandarin (Cai & Brysbaert, 2010) word

frequency databases. The correlation comparing the word frequencies

of the concepts across languages was r(25) = .3, p = .12, indicating

some minor differences in word frequency across languages.

Prior to the scanning session, participants were presented with a

list of the 28 concepts and asked to write down three prominent

properties of the concept's meaning. Possible properties included syn-

onyms, definitions, or experiences associated with the concept

intended to guide participants to mentally evoke a consistent repre-

sentation for each concept. Participants were instructed to write

properties that came to mind quickly and naturally.

There was a total of six presentation blocks of the same 28 stimu-

lus concepts (using different random permutation orders in the differ-

ent presentations) in the scanning session, distributed between three

runs (two blocks per run) to allow participants a brief rest between

runs. A 17-s “X” was presented at the beginning of each block (two

per run) to use as a baseline measure of neural activity. The set of

28 stimuli was presented six times to provide multiple datasets for

training and testing the machine learning classifier in its cross-

validation protocol. Prior to the scan, participants briefly practiced the

experimental paradigm in a mock MRI scanner while receiving head-

motion feedback to minimize movement.

On each trial, participants were visually presented with the stimu-

lus word concept in their native language for 3 s and were asked to

think about the properties associated with that concept. Following this

3 s period, participants were instructed to clear their mind over the

course of 7 s while watching a blue ellipse shrink to nonexistence, to

allow the hemodynamic response to approach baseline before the next

concept appeared. The shrinking ellipse provided a visual fixation tar-

get and conveyed the progress through the 7 s interstimulus interval.

2.3 | fMRI parameterization and image processing

Functional images were acquired on a Siemens Verio 3.0T scanner

and a 32-channel phased-array head coil (Siemens Medical Solutions,

Erlangen, Germany) at the Scientific Imaging and Brain Research facil-

ity (SIBR) at Carnegie Mellon. Scans were acquired using a gradient-

echo echo-planar imagining pulse sequence (TR = 1,000 ms,

TE = 25 ms, and a 60̊� flip angle); each volume contained 20 5-mm

thick AC-PC aligned slices (1-mm gap between slices). The acquisition

matrix was 64 � 64 with 3.125 � 3.125 � 5-mm voxels. SPM8

(http://www.fil.ion.ucl.ac.uk/spm/) was used to correct for head

motion and normalize to the Montreal Neurological Institute template.

The percent signal change (PSC) relative to the fixation condition was

computed at each gray matter voxel for each stimulus presentation

(the PSC data was converted to z-scores).

The main measure of activation evoked by a concept consisted of

the voxel activation levels acquired around the peak of the hemody-

namic BOLD response, namely the mean of four brain images

acquired once per second (i.e., a TR of 1,000) within a 4 s window,

offset 5 s from the stimulus onset (i.e., images 5–8). Mean PSCs were

normalized across voxels for each trial (MPSC). Previous studies have

reported that the mean activation across these four images

(as opposed to a GLM measure) yields a high classification accuracy

obtained by a classifier that relates the activation pattern to the con-

cept (Bauer & Just, 2017; Just et al., 2010; Mason & Just, 2016).

2.4 | Voxel stability

The analysis focused on the most stable voxels, those whose activa-

tion levels were similarly modulated by the set of 28 abstract con-

cepts each time the set was presented. This property selects voxels

whose activation levels constitute neural signatures of a set of con-

cepts (Bauer & Just, 2017; Just et al., 2010, 2017; Kassam, Markey,

Cherkassky, Loewenstein, & Just, 2013; Mason & Just, 2016;

Mason & Just, 2020; Yang et al., 2017a, 2017b). Thus, a voxel with

high stability is one that has a stable tuning curve over the set of stim-

uli. A voxel's stability was computed as the mean pairwise correlation

of its 28 MPSC activation levels (for the 28 abstract concepts) across

all pairwise combinations of the presentation blocks in the training

data. Stable voxels were used as features in classification and factor

analyses. The stable voxels selected in the training data for classifica-

tion are then used in the test set. The 120 most stable voxels in the

whole brain were used as features for classification. This approximate

number of voxels has been shown to reliably capture meaningful

information in the neural representation of individual concepts (Just

et al., 2010; Mason & Just, 2016). To demonstrate that the results and

conclusions are not particularly sensitive to variations in the number

of features, the classification analysis was repeated varying the num-

ber of stable voxels used from 20 to 10,000 (in 20 voxel increments);

the peak classification accuracy occurred between 120 and 180 stable

voxels. The mean classification accuracy gradually decreased with the

inclusion of additional stable voxels beyond 180. To be consistent

with previous studies, 120 stable voxels were used as features.

2.5 | Within participant classification

The data were analyzed using various classification approaches, each

informing a different aspect of the underlying concept representa-

tions. Within participant concept classification captures participant-

specific reliability as well as idiosyncrasies in concept representations.

High accuracies in the within participant classification analyses sug-

gest individual participants were able to think about a specific concept

consistently and distinctly, making them identifiable by the classifier.

A Gaussian Naïve Bayes (GNB) classifier was trained to decode the

28 concepts, based on its training on an independent subset of the

activation data from four of the six presentations and it was tested on

the mean of the two left-out presentations. This cross-validation pro-

cedure was followed in 15 (six choose two) folds. The features used

by the classifier consisted of the activation levels of the 120 most sta-

ble voxels in the training set from anywhere in the whole brain. The

classifier's mean normalized rank accuracy was used to assess

decoding accuracy (i.e., the mean over folds of the normalized rank of

the correct response in a probability-ranked list of all 28 alternatives,

where chance level is 0.5). Chance performance was determined using
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a 10,000-iteration permutation test on each participant separately for

each concept-level prediction.

2.6 | Between participant, within language
classification

Between participant within-language classification quantifies the com-

monalities of the neural representations across participants of the

same language. For each language group separately, a GNB classifier

was trained on the neural signatures of the concepts from all but one

participant and tested on the left-out participant's data. The mean

rank accuracy was computed across the resulting nine folds for the

English group and seven folds for the Mandarin group. Chance perfor-

mance was determined using a 10,000-iteration permutation test. The

voxels used in the classification across participants were those with

the highest stability across participants from that participant's lan-

guage group. To compute the cross-participant stability of voxels, the

MPSC data was first averaged across all presentations for each partici-

pant, and then the mean pairwise correlation of a voxel's 28 MPSC

activation levels (for the 28 abstract concepts) was computed

between all pairs of the remaining participants in the training data.

The 120 most stable voxels (i.e., those with the highest mean pairwise

correlation) from the whole brain across the training participants

(eight for the English group, six for the Mandarin group) were selected

as features for the classifier. The methods for the cross-language clas-

sification, which was based on the factor locations, are described

below after the factor analyses.

2.7 | Factor analysis

To uncover the semantic dimensions underlying the representations

of the 28 abstract concepts, a two-level factor analysis was computed

based on the combined data from the participants of both languages;

a factor analysis was first applied to the data of individual participants

and then the second factor analysis used the factor scores from the

first level as input (using a procedure described in detail in Just,

Cherkassky, Buchweitz, Keller, & Mitchell, 2014). The factor analysis

of the English-specific activation data was previously reported and

used similar methods (Vargas & Just, 2020). The factor analysis of the

Mandarin-specific data followed the same procedure with the excep-

tion that 6-s-level factors were extracted instead of five. The factor

analysis was implemented using a principal factor analytic algorithm in

MATLAB (R2011a; version 7.12; The MathWorks, Natick, MA).

The inclusion of brain regions in the combined-language second

level factor analysis was based on broad AAL (Automated Anatomical

Labeling) regions containing voxels that met three criteria: the voxels

had to: (1) be stable in the cross-participant stability map; (2) have fac-

tor loadings above a threshold of ≥0.4; and (3) form clusters of at least

15 contiguous voxels. Spheres were then generated using the cen-

troids of these clusters. The data from all 16 participants (seven Man-

darin and nine English) were analyzed to identify interpretable factors.

As described in Vargas and Just (2020), an initial map of the union of

800 stable voxels from each language was generated. This map was

then parcellated using AAL (Tzourio-Mazoyer et al., 2002). The

parcellated map was then used to identify AAL-defined regions with

large numbers of stable voxels relative to the total number of voxels in

the AAL region. Then, the input to the first-level factor analysis (per-

formed within each participant) consisted of the mean activation levels

of the most stable voxels in each of the contributing AAL regions. The

total number of voxels used in this factor analysis was 410, similar to

the number used in previous studies (Kassam et al., 2013; Vargas &

Just, 2020). The 410 voxels were selected with the number per AAL-

defined ROI based on the numerosity of the ROI's stable voxels in the

initial map: 40 voxels from left inferior frontal gyrus (LIFG); 30 voxels

from left posterior cingulate cortex; 60 voxels from frontal cortex

bilaterally; 60 voxels from occipital cortex bilaterally; 60 voxels from

temporal cortex bilaterally; and 160 voxels from parietal cortex bilater-

ally. Because the results have been shown to be insensitive to minor

variations in the data analysis parameters, the same parameter values

were used in this study as in Vargas and Just (2020).

To assess the dependency of the analyses on the choice of partic-

ular parameter values, the combined-language second-level factor

analyses were computed with systematic variation of several parame-

ters, namely the number of input voxels, number of first level factors,

and number of second level factors. The effects of these variations

were evaluated by correlating the factor-scores from the second-level

dimensions across the variations and comparing the locations of the

voxel clusters with high factor loadings across the variations. The

effects of these variations were found to be minor, so the parameter

values used in the analysis of this study were the same as those used

in the previous study of these concepts (Vargas & Just 2020).

This first-level factor analysis was performed on all 16 participants

individually, extracting seven factors for each subject, resulting in a

total of 112 vectors of factor scores. A voxel was determined to

belong to a factor if its factor loading exceeded a threshold 0.4

(a typical value for a factor loading threshold). This same threshold

was used in previous studies that characterized brain locations identi-

fied through factor analysis (Just et al., 2010, 2014; Mason &

Just, 2016). To eliminate isolated single voxels, the factor-loading

voxels were required to form clusters containing a minimum of

15 voxels. Spheres for each factor were generated based on the cen-

troids of clusters and extend to account for minor inter-participant

variations in specific voxel locations for that factor.

The goal of the first-level factor analyses was to partition the set

of input voxels into subsets that responded similarly across the set of

abstract concepts, specifying seven factors. This analysis produced

factor scores for the 28 concepts, for each of the seven factors, for

each of the 16 participants. The 16 participants' seven sets of factor

scores were concatenated and used as input into the second, group-

level factor analysis (a total of 112 sets of 28 factor scores) to further

reduce the dimensionality to six dimensions and to seek consistency

across participants and languages. To evaluate the robustness of the

factor results, analyses were computed with varying number of input

voxels and factors. Although there were minor variations in the scores

of individual concepts, the overall factor interpretation and factor

scores for concepts remained generally unchanged.
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To confirm there is a common neural basis across languages, a fac-

tor analysis was computed on both languages separately and the factor

scores were correlated between languages for each identifiable dimen-

sion. The correlations for the second-level factor scores across lan-

guages for each identifiable dimension are as follows: Verbal

representation: r = .55, p < .01; rule-based: r = .45, p < .05; social con-

tent: r = .42, p < .05; externality–internality: r = .32, p < .1; word length:

r = .20, n.s. Notably, the previously unexplainable factor described in

Vargas and Just (2020) was reliably correlated with the newly identified

rule-based factor in the Mandarin group. Additionally, the lack of corre-

lation between the low correlation of the word length factor scores

across languages reflects language-specific orthographic differences.

Regions for the factor analysis of both languages combined were

selected based on their being populated by stable voxels. Whole-brain

voxel-wise stability was computed for each participant separately and

averaged across participants. This method allows for a spatially stable

common set of voxels to be identified. The interpretation of each indi-

vidual factor was largely based on the distribution of the

corresponding factor scores across the 28 concepts (particularly the

nature of the items at the two extremes of the factor scores) and

based to some degree on previous findings that associated particular

processes with the factor locations. Moreover, converging evidence

for the factor interpretations was provided by the correlation

between the factor scores and independent participant ratings of the

items with respect to the factor as interpreted.

2.7.1 | Behavioral rating of semantic dimensions

To obtain converging evidence for the factor interpretations, an inde-

pendent group of 20 participants (10 native English speakers and

10 native Mandarin speakers) were asked to rate each stimulus concept

on a scale from 1 to 7 with respect to its salience to the dimensions as

they were interpreted here (e.g., the degree to which a concept, such

as ethics, was verbally vs. perceptually based). These ratings of the con-

cepts along each of its dimensions were then used as independent vari-

ables in a multiple regression model to predict the activation pattern of

a concept in the factor locations (Just et al., 2010; Vargas & Just, 2020).

The correlations between the behavioral ratings of English and

Mandarin participants for the 28 concepts on each dimension were as

follows: Verbal representation, r = .67, p < .001; externality–internal-

ity, r = .93, p < .001; rule-based, r = .94, p < .001; social content,

r = .9, p < .001. Given the highly reliable correlation between English

and Mandarin behavioral ratings, averaged ratings were used as input

to the regression model.

2.7.2 | Predictive modeling

To evaluate the how well the factor interpretations fit the activation

data, a predictive modeling procedure was used to assess whether the

activation pattern of an individual concept could be predicted, based

on the mapping between behavioral ratings of all the other concepts

in the set (i.e., leaving out the to-be predicted item) with respect to

the factor interpretations and their activation patterns. Accurate pre-

dictions would provide face validity for the factor interpretations.

Activation predictions for each concept were made by developing a

separate regression model for each participant to predict a left-out

concept's activation pattern, based on the model weights from the

remaining 27 concepts. The factor locations used were obtained from

factor analyses based on all participants except for the one being

predicted. The mean prediction accuracies for the 28 concepts were

then averaged across participants. A prediction's accuracy was

assessed by computing the Euclidean distance between the activation

pattern predicted by the model and the observed activation data, rela-

tive to the distance to the representations of the other 27 concepts.

The normalized rank of the distance between the predicted and test

images (among the 28 distances) was the measure of prediction accu-

racy. Significance was computed using a permutation test. The results

of the predicted images with correct labels were compared against

the distribution of rank accuracies of predicted images with random

labels for 10,000 random permutations.

2.8 | Factor-based cross-language classification

Cross-language factor-based classification quantifies the commonality

of representation across languages based on the semantic dimensions

underlying the concept representations. To test whether the factors

(or dimensions) are sufficient for identifying the neural signatures of

individual abstract concepts across languages, a GNB classifier was

trained on the neural signatures from all participants from one lan-

guage and was tested individually on each of the participants from the

other language. The data consisted of the mean MPSC values of each

concept across repetitions for each participant in the factor locations

of the five interpretable factors in the factor analysis including both

languages. A classifier was trained on the data of all nine native

English speakers and was tested on each of the seven native Manda-

rin speakers and vice versa. The 28 rank accuracies from each partici-

pant in the test language were then averaged. There were minimal

differences in accuracies between the two classifiers t(27) = 0.01, n.s.,

so the accuracies of the two classifiers were averaged. Above-chance

performance at p < .01 is 0.56 for concept-level predictions as deter-

mined using a 10,000-iteration permutation test.

3 | RESULTS

3.1 | Systematicity and commonality of abstract
concept representations within and across languages

3.1.1 | Within-participant classification in the two
languages

The individual 28 abstract concepts were reliably identified from

their multi-voxel neural signatures within each language by a
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classifier. This mean classification accuracy for native English partic-

ipants, 0.83, was reliably above chance (range = 0.76–0.94,

p < .001; mean cutoff for p < .001 = 0.60; SD = 0.003) as was that

of the seven native Mandarin participants (mean = 0.77;

range = 0.66–0.84). Although the concepts of all participants in

both groups were identifiable, a t-test comparing the within-

participant classification accuracies of the 28 concepts across lan-

guages indicated that the classification accuracy was reliably higher

in the English participants, t(27) = 6.70, p < .001.

Although the concepts differ in their overall identifiability

between the two language groups, these results indicate that these

abstract concepts have distinctive neural signatures in both languages

that can be characterized by the multi-voxel activation pattern cap-

tured by the classifier.

3.1.2 | Commonality of the concept representations
across speakers of the same language

A between-participant, within-language classification was performed to

determine whether these abstract concept representations were similar

across speakers within a language group. For English speakers, when the

classifier was trained on the data of all but one participant, themean rank

accuracy of the concept identification in the data from the left-out par-

ticipant was 0.74, p < .01, indicating that the neural signatures had a sub-

stantial amount of commonality across participants (Table 2). All

28 individual concepts were reliably classifiable between English-

speaking participants, with a range of 0.58–0.94 (p < .01= 0.55).

For Mandarin speakers, when the classifier was trained on the

data of all but one participant, the mean rank accuracy of the concept

TABLE 2 Commonality of concepts within and across languages as measured using concept‐level decoding rank accuracy. Dashed lines
separate concept categories.

Mandarin
Between‐Participant

Mandarin
Within‐Participant

English
Between‐Participant

English
Within‐Participant Cross‐Language

Subtraction 0.72 0.79 0.94 0.89 0.70

Equality 0.7 0.77 0.58 0.8 0.67

Probability 0.69 0.72 0.8 0.86 0.49

Multiplication 0.91 0.81 0.73 0.92 0.82

Gravity 0.8 0.8 0.86 0.88 0.79

Force 0.84 0.84 0.84 0.87 0.83

Heat 0.63 0.7 0.78 0.8 0.74

Acceleration 0.92 0.77 0.76 0.84 0.77

Gossip 0.63 0.79 0.66 0.79 0.68

Intimidation 0.72 0.82 0.75 0.83 0.73

Forgiveness 0.75 0.69 0.77 0.7 0.80

Compliment 0.81 0.72 0.67 0.81 0.58

Happiness 0.76 0.71 0.75 0.76 0.60

Sadness 0.69 0.78 0.71 0.85 0.76

Anger 0.59 0.79 0.62 0.82 0.62

Pride 0.78 0.86 0.86 0.88 0.84

Contract 0.52 0.77 0.63 0.75 0.66

Ethics 0.71 0.78 0.72 0.83 0.56

Crime 0.66 0.72 0.76 0.8 0.69

Exoneration 0.63 0.77 0.76 0.83 0.41

Causality 0.91 0.89 0.8 0.89 0.62

Consciousness 0.66 0.77 0.79 0.84 0.53

Truth 0.69 0.77 0.62 0.86 0.55

Necessity 0.9 0.82 0.78 0.77 0.57

Deity 0.77 0.69 0.59 0.78 0.60

Spirituality 0.57 0.72 0.79 0.82 0.46

Sacrilege 0.61 0.73 0.62 0.83 0.52

Faith 0.81 0.72 0.78 0.81 0.61

Mean 0.73 0.77 0.74 0.83 0.65

Note: Dashed lines separate concept categories.
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classification in the test data from the left-out participant was 0.73,

p < .01 (Table 2). All 28 individual concepts were reliably classifiable

between Mandarin-speaking participants, with a range of accuracies

from 0.57 to 0.92 (p < .01 = 0.54) except for contract which was clas-

sifiable only at p < .05.

Thus, there is a comparable degree of commonality across partici-

pants within each language group in their neural representation of the

abstract concepts. Below, the underlying dimensions of the concept

representations across languages are described, followed by an

assessment of the commonality of the neural representations of indi-

vidual concepts across languages, taking the underlying dimensions

into account.

In the few cases where between-participant decoding was more

accurate than within-participant decoding within a language, the dif-

ference might be attributable to the different way the stable voxels

were selected in the two cases. The consensually chosen stable voxels

in the between-participant analysis could have reduced idiosyncratic

properties in the concept representations.

3.1.3 | Mandarin-specific factor analysis

The Mandarin-specific factor analysis indicated a common neuro-

semantic basis for the set of 28 abstract concepts across English and

Mandarin, revealing five interpretable dimensions, namely: Verbal rep-

resentation, social content, rule-based, externality/internality, and

word length. The concepts located at the extremes of each of these

dimensions and their respective factor scores are shown in Table 3.

The correlations between the Mandarin behavioral ratings and

Mandarin-only factor scores for the 28 concepts on each dimension

were as follows: Verbal representation, r = .57, p < .01; externality–

internality, r = .66, p < .001; rule-based, r = .34, p = .07; social con-

tent, r = .27, p = .16. The brain locations of the voxel clusters with

high loadings on the interpretable factors for the Mandarin-specific

analysis are shown as spheres in Figure 1.

3.1.4 | Combined-language factor analysis

The commonality of neural representation for abstract concepts in

the two languages was characterized by six underlying dimensions,

five of them readily interpretable. Of the five interpretable dimen-

sions, four were semantic in nature, which we have labeled: Verbal

representation, internality–externality to self, rule-based, and social

content. (Each dimension is further described in the Discussion). The

remaining non-semantic dimension corresponded to the length of

the printed word that named the concept. The five interpretable

group-level factors accounted for 36% of the variance in the

participant-level factors. All but one of these factors (rule-based con-

cepts) have been identified in a previous study of abstract concepts

(Vargas & Just, 2020). The brain locations of the voxel clusters with

high loadings on the interpretable factors are shown as spheres in

Figure 2 (cluster centroid xyz coordinates for each factor can be

found in Table S1). The concepts located at the extremes of each of

these dimensions and their respective factor scores are shown in

Table 4.

Behavioral ratings of each concept reflecting the saliency of each

dimension (as it had been interpreted) were used as independent vari-

ables in a linear regression model that predicted the activation level of

each concept in the factor locations. The mean rank accuracy of pre-

dictions for left-out concepts, averaged first over concepts and then

over participants, was 0.73, p < .001. Performing the predictive

modeling analysis while excluding the word length dimension resulted

in a mean classification accuracy of 0.72, p < .001, which was not sig-

nificantly different from the accuracy when word length was included,

t(27) = 1.80, n.s.

The correlation for a given dimension between the factor scores

of the 28 concepts and their behavioral ratings were reliable for all

semantic dimensions for both languages. The correlations between

ratings and factor scores from the language-specific factor analyses

for each semantic dimension are as follows: the externality dimension

had an r = .63, p < .001 for Mandarin and r = .70, p < .001 for English;

TABLE 3 Mandarin-only factor analysis output including: six concepts with the highest and lowest factor scores for each mapped dimension,
factor locations, and correlations between factor scores and behavioral ratings

Verbal representation Externality/internality Rule-based Social content Word length

Faith (2.17) Subtraction (2.20) Truth (1.48) Intimidation (1.73) Causality (3.23)

Spirituality (1.78) Equality (1.84) Acceleration (1.46) Sadness (1.63) Necessity (2.22)

Deity (1.24) Gravity (1.57) Gravity (1.03) Equality (1.52) Acceleration (1.61)

Compliment (1.19) Force (1.00) Sadness (1.02) Contract (1.21) Happiness (0.89)

Probability (1.02) Causality (0.93) Causality (0.96) Ethics (1.06) Exoneration (0.65)

Causality (0.98) Contract (0.50) Force (0.84) Gossip (0.65) Compliment (0.46)

Forgiveness (�1.10) Spirituality (�0.78) Consciousness (�1.34) Crime (�0.78) Sadness (�0.72)

Consciousness (�1.32) Deity (�0.88) Gossip (�1.39) Happiness (�0.89) Contract (�0.79)

Gravity (�1.38) Forgiveness (�0.99) Necessity (�1.43) Force (�1.30) Faith (�0.93)

Acceleration (�1.56) Pride (�1.19) Anger (�1.45) Heat (�1.55) Equality (�1.18)

Sadness (�1.60) Happiness (�1.38) Sacrilege (�2.12) Gravity (�2.07) Force (�1.46)

Anger (�1.76) Sadness (�1.42) Compliment (�2.55) Spirituality (�2.60) Sacrilege (�1.61)
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the social dimension had an r = .52 p < .01 for Mandarin and r = .46,

p < .05 for English; and the rule-based dimension had an r = .40,

p < .05 for Mandarin and r = .39, p < .05 for English. The similarity

between languages in the correlations between factor scores and

mean behavioral ratings for the Verbal dimension: in the case of the

English ratings, it was r = .82, p < .001, and for the Mandarin ratings,

F IGURE 1 Locations for five interpretable factor dimensions from Mandarin-specific analysis. These spheres were specified using the
centroids of clusters of voxels (containing a minimum of 10 voxels) with high loadings (>0.4) on each of the factors

F IGURE 2 Locations for five interpretable factor dimensions from combined-language analysis. These spheres were specified using the
centroids of clusters of voxels (containing a minimum of 10 voxels) with high loadings (>0.4) on each of the factors

TABLE 4 The six concepts with the highest and lowest factor scores for each interpretable dimension from the combined-language factor
analysis

Verbal representation Externality/internality Rule-based Social content Word length

Ethics (1.23) Causality (1.79) Multiplication (2.00) Intimidation (1.40) Causality (1.88)

Spirituality (1.19) Gravity (1.53) Subtraction (1.97) Pride (1.33) Acceleration (1.73)

Faith (1.19) Sacrilege (1.29) Probability (1.61) Gossip (1.29) Happiness (1.43)

Sacrilege (1.06) Equality (1.06) Acceleration (0.85) Forgiveness (1.21) Probability (1.19)

Necessity (0.89) Subtraction (0.99) Ethics (0.82) Exoneration (1.11) Compliment (0.99)

Exoneration (0.82) Crime (0.67) Contract (0.74) Anger (0.72) Necessity (0.86)

Sadness (�0.73) Anger (�0.90) Crime (�0.77) Subtraction (�0.63) Truth (�0.90)

Happiness (�1.19) Forgiveness (�0.93) Exoneration (�0.93) Happiness (�0.65) Ethics (�1.05)

Acceleration (�1.67) Pride (�1.36) Consciousness (�1.08) Necessity (�0.77) Pride (�1.24)

Force (�1.73) Spirituality (�1.47) Sacrilege (�1.30) Multiplication (�0.92) Faith (�1.52)

Gravity (�2.06) Happiness (�1.82) Anger (�1.36) Heat (�1.77) Crime (�1.59)

Heat (�2.12) Sadness (�2.06) Compliment (�1.70) Spirituality (�3.15) Force (�2.33)
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it was r = .42, p < .05. These significant correlations between the

behavioral ratings and factor scores indicate convergent validity for

the interpretations of the semantic dimension for both English and

Mandarin samples.

3.2 | Common representation supported by cross-
language classification

To assess the similarity of individual concept representations across

languages based on the underlying factors, a classifier was trained on

one language to predict individual concepts in the other language.

Cross-language classification of individual concepts resulted in a mean

rank accuracy (averaged over concepts, direction of decoding, and

participants) of 0.65, p < .001. (The right-most column in Table 2

shows the accuracies for individual concepts.) When individual con-

cepts were averaged within categories, the categories with the

highest accuracies were mathematics (0.67), scientific (0.78), emotion

(0.70), and social (0.70). When the features for the between partici-

pant cross-language classification were defined independently of the

factors, using the union of 120 stable voxels from each language

regardless of their association with any of the factors, the mean accu-

racy was 0.69, p < .01. The classification accuracy was only slightly

lower (0.65 vs. 0.69) when computed using only stable voxels associ-

ated with factors, indicating how well a factor-based account of the

data accounts for the similarity between languages in their neural rep-

resentations of abstract concepts.

3.3 | Differences in the neural representation of
concepts across languages

Although a common set of dimensions was identified (as indicated by

the reliable correlations of factor scores across the two language-

specific factor analyses in Table 5), the distribution of the items along

corresponding factors was similar but not identical (Table 3 and table

1 from Vargas & Just, 2020).

Independently collected behavioral ratings provided converging

evidence that a few individual abstract concepts are represented

somewhat differently along the verbal representation dimension.

English speakers rated emotions (e.g., happiness and anger), social

concepts (e.g., intimidation and compliment) and spiritual concepts

(e.g., deity and sacrilege) as being more verbally represented than did

Mandarin speakers. Additionally, Mandarin speakers rated mathemati-

cal concepts (e.g., subtraction and multiplication) and scientific con-

cepts (e.g., heat and acceleration) as more verbally represented than

did English speakers.

Qualitative descriptions of the concept properties that partici-

pants reported suggest polysemous words such as equality were rep-

resented somewhat differently across languages. English speakers

tended to interpret the concept of equality partly in the context of

social equality while Mandarin speakers tended to interpret equality in

terms of its mathematical meaning. These results suggest that the dif-

ference between languages is not in brain function but in the mean-

ings of the “translation equivalents” of the polysemous word equality

in the two languages. These differences could be due in part to differ-

ences in relative frequency or prominence of the two senses of the

word in the two languages.

4 | DISCUSSION

4.1 | Overview

The results of this study suggest that a common neural infrastructure

exists for representing abstract concepts across English and Mandarin.

Factor analyses using activation data from both languages revealed

four semantically interpretable dimensions, verbal representation, inter-

nality–externality, social content, and rule-based representation underly-

ing the activation patterns of 28 abstract concepts for both languages.

A secondary finding was that although the neural regions or systems

associated with these representations are common, the representa-

tions of individual concepts sometimes differ with respect to the

salience of an underlying dimension.

4.2 | Language-invariant semantic primitives of
abstract concept representation

The four emerging neurosemantic dimensions underlying representa-

tion of abstract concepts are: verbal representation, internality–exter-

nality, social content, and rule-based representation. The ability to think

TABLE 5 Correlation matrix of factor scores across English (rows) and Mandarin (columns) factor analyses for each semantic dimension

English-by-Mandarin Verbal representation Word length Externality/internality Rule-based Social content

Verbal representation 0.55 (p < .01) �0.05 �0.29 �0.38 0.31

Word length 0.01 0.20 (n.s) �0.33 �0.11 0.14

Externality/internality 0.42 0.08 0.32 (p < .1) �0.14 0.13

Rule-based 0.12 0.08 0.35 0.45 (p < .05) 0.40

Social content �0.42 �0.23 �0.28 0.05 0.42 (p < .05)

Note: The variance each dimension accounted for varied across languages but were aligned here for easier comparison.

Abbreviation: n.s, not significant
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of abstract meaning draws on the ability to think of concepts in terms

of other verbal concepts, to rely on the use of the self as a reference,

to think in terms of social contexts, and to consider the rules that gov-

ern certain concepts. The combined-language factors highlight possi-

ble subnetworks that are present in the general semantic network

identified by Ralph, Jefferies, Patterson, and Rogers (2017). These

subnetworks represent the processing of specific types of semantic

information. Regardless of language, people rely on the same broad

neural systems to represent abstract concept meaning.

Although previous research has found emotion processing to be

involved in the processing of abstract concepts (Kassam et al., 2013;

Kousta, Vigliocco, Vinson, Andrews, & Del Campo, 2011; Vigliocco

et al., 2014), an emotion-specific dimension did not emerge in our fac-

tor analyses. However, one of the factor locations of the social con-

tent dimension identified from the combined-language factor analysis,

posterior cingulate, is often associated with affective processing. The

inclusion of this region could be due to the affective involvement in

abstract concepts like intimidation, pride, and forgiveness for the

social dimension. Vigliocco et al.'s (2014) abstract stimuli were

selected on a different basis (concreteness ratings) than ours (mem-

bership in seven abstract semantic categories). Many of our abstract

categories (such as science, mathematics, and metaphysics (logic) and

hence their members (e.g., gravity, force, acceleration, and causality,

truth, necessity) are sparsely represented in the Vigliocco stimulus set.

By contrast, the Vigliocco stimulus set contains many descriptors of

mental states that have a significant affective component, such as

agony delirium, frenzy, and panic. It may be that an affective compo-

nent plays a larger role in the representations of abstract concept rep-

resentations pertaining to mental states rather than to physical or

constructed worlds.

4.2.1 | The verbal representation dimension of
abstract concepts

This dimension organizes concept representations based on their

degree of association with word (verbal) representations (manifested

as activation in left inferior frontal gyrus (LIFG, specifically, the trian-

gular subregion) and disassociation with visuospatial processing and

action imagery (lower activation in LLOC and LSMG) (Vargas &

Just, 2020). The verbal representation dimension accounted for the

most variance (9%) in the participant-level factor representations and

was the most salient dimension for all participants in both languages.

Concepts such as faith, spirituality, and ethics anchor the verbal

extreme of this dimension while concepts such as heat, gravity, and

force anchor the other, nonverbal extreme. The concepts at the verbal

extreme evoke activation in language areas, presumably because the

concept evokes the thought of verbal labels for other related con-

cepts. The presence and salience of this dimension in these data and

in previous studies work (Vargas & Just, 2020; Wang, Conder,

Blitzer, & Shinkareva, 2010) provide converging evidence for the

prominent role of this semantic dimension in the representation of

abstract concepts.

4.2.2 | The self-based dimension of abstract
concepts

The internality–externality dimension organizes conceptual representa-

tions based on the degree to which a concept uses the self as a refer-

ence. Concepts such as pride, spirituality, and sadness anchor the internal

extreme of the dimension while the concepts causality, gravity, and sacri-

lege anchor the external extreme. This dimension accounted for 8% of

the variance in the participant-level factor analysis. This factor's loca-

tions include RSMG, a region shown to be related to the projection of

one's own mental state onto others (Silani, Lamm, Ruff, & Singer, 2013).

4.2.3 | The social interaction dimension of abstract
concepts

This dimension organizes abstract representations based on whether

they entail a social component. The concepts intimidation, pride, gos-

sip, and forgiveness typify the extreme of this dimension. This dimen-

sion accounts for 6.4% of the variance in the participant-level factor

analysis. The factor locations include regions associated with autobio-

graphical information processing (posterior cingulate) and theory-of-

mind (right temporoparietal junction), as well as the triangular region

of LIFG. Although the triangular region of LIFG was a component of

the social dimension in the combined-language factor analysis, the

presence of this component emanates from the Mandarin-specific

data (Figure 1). This participation of LIFG in the Social dimension only

in Mandarin is an example of differential involvement of various com-

ponents of meaning across languages. It is uncertain from our study

what functional role LIFG is contributing to this dimension; for exam-

ple, it is possible that some abstract concepts with a social component

also entail an associated verbal expression that LIFG references and

this LIFG role may be differentially used in Mandarin.

4.2.4 | The rule-based dimension of abstract
concepts

This dimension organizes concepts in terms of their being based on

some set of rules or that define or are defined by specific, precise rela-

tionships between other concepts. The concepts multiplication, proba-

bility, and ethics typify this dimension. The factor locations are left

precuneus and right supramarginal gyrus. This factor accounts for

7.1% of the variance in the participant-level factor analysis. The

regions associated with this dimension share a partial overlap in left

parietal cortex with regions previously identified to be associated with

algebraic and equation-based processing (Mason & Just, 2016). The

Mandarin-specific factor analysis indicated that one of the rule-based

factor locations was in the triangular region of LIFG (Figure 1). This

region is sometimes associated with semantic selection (Badre,

Poldrack, Paré-Blagoev, Insler, & Wagner, 2005), and its role in the

rule-based representations may entail reference to a verbal expression

of some aspect of a rule.
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4.2.5 | The neural representation of word length in
English and Mandarin

This dimension organizes the concepts in terms of the length of the writ-

ten word that names them. For English, the word length factor scores

are correlated with the number of characters in a word, with r = .68,

p < .001. For Mandarin concepts, the number of strokes was used as a

measure of word length. There was insufficient variance in the number

of characters of the set of Mandarin concepts, with 24 of the 28 con-

cepts containing two characters (M = 2.04; SD = 0.5). For Mandarin, the

word length factor scores are correlated with the number of strokes in a

word, with r = .56, p < .01. Although the number of characters and the

number of strokes in a word are not correlated (r = .2, n.s.), when nor-

malized (converted to z-scores) and averaged, the resulting relative-

word-length measure of participants of both languages was correlated

with the factor scores of this dimension at r = .8, p < .001. The region

associated with this dimension (i.e., where the voxels with high loadings

on this factor are located) is isolated to the occipital pole. This finding

suggests the presence of a language-common, word length dimension

that captures some aspect of the early visual percept of the word.

4.3 | Commonality of meaning for abstract
concepts

The common neural organization of the concepts, as characterized by

the shared underlying semantic dimensions, was sufficient to serve as

a basis for reliably classifying (identifying) individual concepts using

the activation signature from the other language. This cross-language

classifiability provides converging evidence for a language-invariant

semantic representation of abstract concepts across the set of 28 con-

cepts. The high cross-language decodability of mathematics and sci-

ence concepts could be attributable to the language-invariant

algebraic expression of these concepts (Mason & Just, 2016). The high

cross-language decodability of emotion and social concepts could be

attributable to a common embodied nature of these concepts.

The similarity of the factor analysis outcomes in the two lan-

guages indicates a common underlying neurocognitive infrastructure

for processing abstract concepts. This semantic resource distributed

across multiple brain locations constitutes a more specialized subset

of regions previously identified as a general semantic network (Ralph

et al., 2017). These regions were sufficient for reliably decoding indi-

vidual abstract concepts across languages based on their neural repre-

sentations. However, some of the underlying dimensions were

differentially salient across languages.

4.4 | Nuances in the meaning of individual abstract
concepts across languages

Not all concepts were decoded equally accurately across languages; in

each language, there were individual concepts that were reliably clas-

sified within language but not across language. For example, causality

was highly decodable within English (0.89 accuracy) and Mandarin

(0.8) but less decodable across languages (0.62). In these cases, the

semantic properties (e.g., contexts or associated concepts) that were

generated by participants for these concept representations could be

homogenous within each language but distinct across languages.

Low cross language decodability could often be explained by a dif-

ferential salience of verbal processing (as is this case for some con-

cepts such as consciousness, necessity, or faith) while other concept

differences could be attributable to differing senses of meaning across

languages. One such example cited above is that in Mandarin, the con-

cept, equality, was more strongly interpreted in its mathematical sense

than social sense relative to the English interpretation. These differ-

ences could be caused by differences in how concepts like equality are

learned or taught, or the differences may arise because of the poly-

semy of some of the words used to describe the abstract concept.

Due to small sample sizes, it is uncertain whether cultural differences

or characteristics of the two samples of participants or nonequivalence

of the stimulus words' connotation or senses were responsible for the

differences between languages in some of the neural representations.

In addition to occasional nuances of a difference between lan-

guages in the neural representations of individual concepts, the underly-

ing dimensions sometimes played a larger role in one language than the

other. For example, the verbal representation dimension accounted for

10% of variance in the English factor analysis but only 7% in the Manda-

rin analysis. Differences such as these indicate that abstract concepts in

the two languages can evoke various dimensions of meaning to different

degrees. Such differences could be attributable to differences in the

senses or connotation of the translation-equivalent word concepts.

5 | CONCLUSION

Factor analyses revealed a set of common neurosemantic dimensions

that constitute the basis for the representation of abstract concepts

across languages: verbal representation, internality–externality, social

content, and rule-based content. The subsequent predictive modeling

based on behavioral ratings of the concepts provides convergent valid-

ity for the factor interpretations. The successful cross-language classifi-

cation suggests that the underlying semantic dimensions provide a

sufficient basis for decoding abstract word concepts across languages.

Although the neural dimensions used for representing abstract concepts

are common across languages, differences in the meaning of some indi-

vidual concepts can be accommodated in terms of differential salience

of particular dimensions. These semantic dimensions constitute a set of

neurocognitive resources for abstract concept representation within a

larger set of regions responsible for general semantic processing.
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