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Introduction

Although the study of concept knowledge has long been of interest
in psychology and philosophy, it is only in the past two decades that it has been
possible to characterize the neural implementation of concept knowledge. With
the use of neuroimaging technology, it has become possible to ask previously
unanswerable questions about the representation of concepts, such as the
semantic composition of a concept in its brain representation. In particular, it
has become possible to uncover some of the fundamental dimensions of repre-
sentation that characterize several important domains of concepts.
Much of the recent research has been done with fMRI to predict and

localize various concept representations and discover the semantic properties
that underlie them. Commonly used experimental designs in this research area
present single words or pictures of objects, measure the resulting activation
pattern in multiple brain locations, and develop a mapping between the
topographically distributed activation pattern and the semantic representation
of the concept. The primary research topics concerning concept representa-
tions pertain to three issues: The composition of concept representations; the
neurally defined underlying semantic dimensions; and the relation between
neuroimaging findings and cognitive and psycholinguistic findings. It is these
types of relationships between cortical function and meaning representation
that allow us to understand more about both the way knowledge is organized
in the human brain and the functional role that various brain systems play in
representing the knowledge.
Concepts are often qualitatively different from one another with regard to

their perceptual grounding. As a result, one area of research has largely
focused on the neural representations of concrete object concepts. However,
as imaging technology and analytic techniques continue to improve, the neural
representations of seemingly ethereal, abstract concepts such as ethics and
truth have recently become a topic of increasing interest. In addition to the

Due to a production issue, this chapter appears as the final chapter; it was intended to be in
Part II.
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interest in such highly abstract concepts, recent research has also investigated
hybrids between concrete and abstract concepts such as emotions, physics
concepts, and social concepts. These hybrid concepts are not directly percep-
tually grounded but they can nevertheless be experienced. This chapter pro-
vides an overview of contemporary neuroimaging research examining the
neural instantiation of concrete concepts, abstract concepts, and concepts that
fall somewhere in between, which we call hybrid concepts.

Contemporary Approaches to Analyzing
Concept Representations

Univariate-Based Analyses

The initial approach of task-related fMRI imaging was to measure the differ-
ence in activation for a class of stimuli (such as a semantic category, like
houses) relative to a “rest” condition. At each 3-dimensional volume element
in the brain (a voxel), a general linear regression model (GLM) is fit to relate
the occurrence of the stimuli to the increase in activation relative to the rest
condition. The result is a beta weight whose magnitude reflects the degree of
condition-relevant activation in each voxel. This approach proves useful for
investigating the involvement of cortical regions whose activation systematic-
ally increases or decreases relative to rest for a specific mental activity.
However, with this voxel-wise univariate approach, complex relations
between the activation in different brain regions within a network are often
not apparent (Kriegeskorte, Goebel, & Bandettini, 2006; Mur, Bandettini, &
Kriegeskorte, 2009). Moreover, treating each voxel independently of the
others misses the fact that the activation pattern corresponding to a concept
consists of a set of co-activating voxels that may or may not be proximal to
each other. Nevertheless, the univariate approach was successful in identifying
which brain regions were activated in response to a given class of concepts.

Multivariate Pattern Analysis (MVPA)

The advent of higher-resolution imaging analyses aided in shifting the research
focus from identifying the cortical regions involved in the representation of
concepts to focusing on the coordinated activation across a network of brain
regions or subregions (Haxby et al., 2001; Haynes & Rees, 2006). Instead of
assessing the activation evoked by a class of concepts in terms of individual
voxels in various brain regions considered independently of each other, multi-
variate analyses treated the activating voxels in conjunction with each other,
as multiple dependent variables. Multivariate pattern analysis (MVPA) is
graphically illustrated in Figure 23.1. MVPA refers to a family of analyses
designed to take into account the multivariate relationships among the voxels
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that represent various concepts. Some of the most common analyses for
investigating concept representations include: 1) Representational Similarity
Analysis (RSA), which enables comparison of the multivariate activation
patterns of different concepts; 2) Factor Analysis or Principle Components
Analysis (PCA), which enables discovery of the lower-dimensional structure of
distributed patterns of activation; 3) Predictive Modeling, which enables
assessment of various postulated interpretations of underlying semantic struc-
tures by predicting activation patterns of concepts; and 4) Encoding Models,
which enable quantitative assessment of various organizational structures
hypothesized to drive the activation. These techniques tend to answer some-
what different questions.

Representational Similarity Analysis (RSA)

RSA is often used to measure the similarity (or dissimilarity) of representa-
tional structures of various individual concepts or categories of concepts. The
representation of a concept or a category of concepts can be defined as the
evoked activation levels of some set of voxels. These activation patterns can be
computed with respect to all of the voxels in the whole cortex but are often
restricted to the voxels in semantically relevant regions. The most common
technique is to redefine the representation of a concept from being an acti-
vation pattern to a similarity pattern with respect to the other concepts in the
set (Kriegeskorte, Mur, & Bandettini, 2008a). For example, the neural repre-
sentation of a concept like robin can be thought of in terms of its similarities to
a set of other birds. This approach makes it possible to compare various brain
subsystems in terms of the types of information they represent, and thus to
characterize the processing characteristics of each subsystem. For example,
RSA has been used to demonstrate the similarities in the visuospatial subsys-
tems of humans and monkeys in the representations of visually depicted

Figure 23.1 Conceptual schematic showing differences between GLM activation-based
approaches and pattern-oriented MVPA, where the same number of voxels
activate (shown as dark voxels) for two concepts but the spatial pattern of the
activated voxels differs.
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objects (Kriegeskorte et al., 2008b). The strength of this approach is its higher
level of abstraction of the neural representation of concepts, representing them
in terms of their relations (similarities) to other concepts. The cost of this
approach is its limited focus on the representation of the properties of individ-
ual concepts.

Extracting Dimensions of Semantics (Factor Analysis / PCA)

Factor analysis and PCA are used to extract neurally meaningful dimensions
from high-dimensional activation patterns. “Neurally meaningful” refers to a
subset of concepts systematically evoking activation from a subset of relevant
voxels. For example, concrete objects that entail interaction with parts of the
human body (such as hand tools) evoke activation in motor and pre-motor
areas, such that a neural dimension of body–object interaction emerges (Just,
Cherkassky, Aryal, & Mitchell, 2010). This approach focuses on dimensions
that are shared by some concepts and de-emphasizes the differences among the
concepts that share the dimension. The regions corresponding to the dimen-
sion can be localized to particular brain areas (by noting the factor loadings of
various clusters of voxels).

After the dimension reduction procedure finds a dimension and the items
and voxels associated with it, the dimension requires interpretation. The
source of the interpretation often comes from past knowledge of the functional
roles of the regions involved and the nature of the items strongly associated
with the dimension. For example, if hand tools obtain the highest factor scores
on some factor, then that factor might plausibly be interpreted as a body–
object interaction factor. (The items’ factor scores indicate the strength of the
association between the items and the factor). One approach to assessing an
interpretation of a dimension (such as a body–object interaction dimension in
this example) is to first obtain ratings of the salience of the postulated dimen-
sion, say body–object interaction, to each of the items from an independent
group of participants. For example, the raters may be asked to rate the degree
to which a concept, such as pliers, is related to the hypothesized dimension
body–object interaction (Just et al., 2010). Then the correlation between the
behavioral ratings and the activation-derived factor scores of the items pro-
vides a measure of how well the interpretation of the dimension fits the
activation data. This technique has been used to extract and interpret seman-
tically meaningful dimensions underlying the representations of both concrete
nouns and abstract concepts (Just et al., 2010; Vargas & Just, 2019).

Predictive Modeling

The goal of a predictive modeling procedure is to assess whether the activation
pattern of a concept that was left out of the modeling can be predicted with
reasonable accuracy, given some theoretical basis. The prediction process
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starts by generating a hypothesis about the underlying factor or dimension
(which is based on how the items are ordered by their factor scores and on the
locations of the voxels with high factor loadings). Then a linear regression
model is used to define the mapping between the salience ratings of all but one
item and the activation levels evoked by those items in factor-related locations
(voxel clusters with high factor loadings in factor analyses that excluded the
participant in question). The mapping is defined for all of the underlying
factors. Then the activation prediction for the left-out item is generated by
applying the mappings for all of the factors to the ratings of the left-out item.
This process is repeated, each time leaving out a different item, generating an
activation prediction for all of the items. Activation predictions for each
concept can be made within each participant and then averaged over partici-
pants. The accuracy of the predictions provides converging evidence for the
interpretation of the neurosemantic factors. Unlike correlations between
behavioral ratings and factor scores for items, this approach develops a
mapping that is generative or predictive, applying to items uninvolved in the
modeling.

Hypothesis-Driven Encoding Modeling

Encoding models provide another more general way to test whether a
hypothesized semantic organization structure is capable of explaining the
activation data for some set of concepts. A first step in the modeling is the
specification of a theoretically plausible feature set that is hypothesized to
account for the relationship between a stimulus set and the corresponding
evoked activation patterns (Naselaris, Kay, Nishimoto, & Gallant, 2011). For
example, the co-occurrence of noun concepts with verbs in a large text corpus
may account for the relationship between individual concepts and activation
patterns for those concepts, say in a regression model. The resulting beta-
weights from the regression model quantify the degree to which each feature
determines the relationship between the stimuli and neural activity (Mitchell
et al., 2008). The ability of this mapping to generalize to novel concepts, either
in activation space or in feature space, provides a quantitative assessment of
the plausibility of the hypothesized relation. This approach is especially useful
for representations that are less clearly mapped in the brain, such as abstract
concepts, enabling an evaluation of the neural plausibility of theories of
abstract concept representation (Wang et al., 2018).
More recently, encoding models have been used with semantic vectors, a

feature structure constructed by extracting information from the co-
occurrence of words in a large text corpus, to serve as a basis for predictions
of large-scale sets of concept representations (Pereira et al., 2018). Encoding
models have also been used to measure the ability for theoretically-derived
semantic feature structures to explain neural activation data for sentences
(Yang, Wang, Bailer, Cherkassky, & Just, 2017). Encoding models are a
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flexible tool that allow for the quantitative evaluation of the ability of theor-
etically motivated feature structures to account for brain activation patterns.

Neurosemantic Structure of Concrete Object Representations

Object concepts are the most perceptually driven of concept represen-
tations. Consequently, the neural representation of object concepts is fairly
well understood because the neural organization of low-level perceptual infor-
mation is well understood (Grill-Spector & Malach, 2004; Martin, 2007).
Haxby et al. (2001) showed that pictures of different objects could be related
to each other based on their pattern of activation in the visuospatial pathway,
specifically in the fusiform face area (FFA) and parahippocampal place area
(PPA). Patterns of activation in these regions were distinguishable in terms of
the object categories being represented (i.e., faces vs. houses). It seems clear
that a substantial part of concrete object representations consists of the
representation of their perceptual properties.

Moreover, it has been possible to determine the sequence in which various
types of perceptual information becomes activated as the thought of a concrete
object emerges. Recent MEG research has shown that the temporal trajectory
of the neural activation for object representations starts with low-level visual
properties such as image complexity, which begins to be activated about 75 ms
after stimulus onset in the early bilateral occipital cortex. Later, at 80–120 ms,
information concerning more complex categorically defined shapes (e.g., has
eyes, has four legs) begins to be activated along the left ventral temporal cortex
and anterior temporal regions (Clarke, Taylor, Devereux, Randall, & Tyler,
2013). The early onset object representation suggests that coarse categorical
distinctions between objects are rapidly represented along a left-hemispheric
feed-forward neural pipeline. After this initial representation is generated, more
complex semantic features take form through recurrent activation and the
integration of more distributed cortical systems at 200–300 ms. This temporal
trajectory from simple to complex information suggests a cumulating pipeline
designed to construct meaning from distributed semantic features.

Beyond the understanding that concrete object representations are based in
large part on the objects’ perceptual properties, several interesting questions
remain, such as how the differing perceptual properties of an object are
integrated in the object representation and what semantic properties underlie
the organization of the representations of differing objects.

Hub-and-Spoke Model of Feature Integration in Concept
Representations

Any individual concept representation is thought to be composed of a network
of semantic features (Collins & Loftus, 1975). Connections to more similar
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(closer) semantic representations are more likely and easier to come to mind
than more distal ones. The anterior temporal lobe (ATL), sometimes referred
to as the convergence zone or hub, has been credited with incorporating
individual semantic features of concepts (the spokes, in this analogy) into an
integrated representation of that concept (Meyer & Damasio, 2009). Recent
fMRI research suggests that this integration of semantic features in the brain is
localized to the ATL. One study showed that combining color-related acti-
vation coded in the right V4 region of the occipital cortex and shape-related
activation coded in the lateral occipital cortex (LOC) allowed visual objects to
be distinguished in the ATL (Coutanche & Thompson-Schill, 2015). Although
the ATL has also been shown to activate for abstract concepts (Hoffman
2016), a study similar to Coutanche and Thompson-Schill (2015) has yet to be
conducted showing that individual abstract concepts can be decoded from
ATL based on their composite semantic features. In sum, the ATL is thought
to act as a cognitive mechanism that integrates perceptual and verbal (i.e.,
concrete and abstract) information comprising the representation of a concept
(Lambon Ralph, 2014).

Semantic Dimensions of Concrete Concepts

Contemporary research into concrete object concepts has progressed beyond
the focus on perceptual aspects of concept representations and begun to
examine higher-level semantic properties of concrete concept representations.
This approach generally utilizes dimension reduction techniques such as factor
analysis, first on an individual participant level then at the group level, to
investigate semantic dimensions that are present in the neural representations
across individuals (Just, Cherkassky, Buchweitz, Keller, & Mitchell, 2014).
This dimension reduction approach applied to a set of activation patterns has
the advantage of discovering neurally driven dimensions of meaning rather
than imposing a previously hypothesized semantic organization.
Just et al. (2010) utilized this approach to uncover three semantic dimen-

sions underlying the representation of 60 words referring to concrete nouns
(e.g., hammer, apple). Specifically, they found that these 60 concrete concepts
could be characterized by the way they relate to eating, manipulation (or body–
object interaction), and shelter (or enclosure). Moreover, each of these dimen-
sions was associated with a small set of cortical regions. The shelter dimension
was associated with activation in regions of bilateral parahippocampal place
area, bilateral precuneus, and left inferior frontal gyrus. The manipulation
dimension was associated with activation in regions of left supramarginal
gyrus and left pre- and post-central gyrus (the participants were right-handed).
The eating dimension was associated with activation in regions of the left
inferior and middle frontal gyrus and left inferior temporal gyrus. These
results indicate the beginnings of a biologically plausible basis set for concrete
nouns and highlight semantic properties beyond a visuospatial domain.
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Other research has sought to discover semantic dimensions of non-word or
picture concept representations using a different approach. Principal
Components Analysis (PCA) was applied to the activation evoked by
1800 object and action concepts shown in short movie clips (Nishimoto
et al., 2011). This approach sub-divided the brain based on the similarities of
the activation patterns among the concepts to their co-occurrence with a large
text corpus. This technique was also applied to the activation patterns evoked
by natural continuous speech (Huth, De Heer, Griffiths, Theunissen, &
Gallant, 2016). Both the video clip and the natural-speech studies related
neural activation similarities to corpus co-occurrence information to locate
semantically consistent regions within the cerebral cortex based on domain-
specific information. This parcellation approach associated the activation of
various regions and semantic categories with individual concepts. The 12 inter-
pretable semantic categories from the PCA were: mental (e.g., asleep); emo-
tional (e.g., despised); social (e.g., child); communal (e.g., schools); professional
(e.g., meetings); violent (e.g., lethal); temporal (e.g., minute); abstract (e.g.,
natural); locational (e.g., stadium); numeric (e.g., four); tactile (e.g., fingers);
and visual (e.g., yellow). Aside from the format of stimulus presentation, the
notable distinction between the dimension reduction approaches in Just et al.
(2010) and Huth et al. (2016) was that Huth et al. generated semantic dimen-
sions based on the mapping between activation and co-occurrence, while Just
et al. generated dimensions from the activation patterns. The exploration of
the underlying dimensions of concrete concepts helps provide a basis for the
semantic organization of perceptible concepts beyond basic visuospatial
properties.

Neurosemantic Signatures of Abstract Concepts

The representations of abstract concepts, such as ethics and law, are
neurally and qualitatively distinct from those of concrete concepts. Abstract
concepts, by definition, have no direct link to perception, with the exception of
some form of symbolic representation (e.g., lady justice holding a scale to
represent the concept of law or justice). The conventional view of abstractness
portrays it as an absence of a perceptual basis, that is, the opposite of
concreteness (Barsalou, 1999; 2003; Brysbaert, Warriner, & Kuperman,
2014; Wang, Conder, Blitzer, & Shinkareva, 2010). Although it is easy to
define abstract concepts such as those lacking concreteness, this definition does
not describe the psychological or neurocognitive properties and mechanisms
of abstract concepts.

Concrete and abstract concepts generally evoke different activation pat-
terns, as a meta-analysis showed (Wang et al., 2010). This meta-analysis
indicated that the two types of concepts differ in their activation in areas
related to verbal processing, particularly the left inferior frontal gyrus (LIFG).

The Neural Representation of Concrete and Abstract Concepts 455

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635462.029
Downloaded from https://www.cambridge.org/core. Carnegie Mellon University, on 15 Sep 2021 at 00:03:10, subject to the Cambridge Core terms of use, available at



Abstract concepts elicited greater activation than concrete concepts in such
verbal processing areas. By contrast, concrete concepts elicited greater acti-
vation than abstract concepts in visuospatial processing (precuneus, posterior
cingulate, and fusiform gyrus). This meta-analysis was limited to univariate
comparisons of categories of concepts and did not have access to the acti-
vation patterns evoked by individual concepts. This limitation potentially
overlooks nuanced distinctions in the representational structure. Univariate
contrasts potentially overlook critical relationships across neural states and
neural regions (Mur et al., 2009). Through the use of MVPA techniques, more
recent studies have begun to examine the underlying semantic structure of sets
of abstract concepts. The next section focuses on various imaging studies
examining the neural activation patterns associated with abstract concepts
and explores the possible semantic structures that are specific to
abstract concepts.

Neurosemantic Dimensions of Abstract Meaning

As in the case of concrete concepts, the semantic dimensions underlying
abstract concept categories can be identified from their activation patterns.
One of the first attempts to decode the semantic content of abstract semantic
information was conducted by Anderson, Kiela, Clark, and Poesio (2017).
A set of individual concepts that belonged to various taxonomic categories
(tools, locations, social roles, events, communications, and attributes) were
decoded from their activation patterns. Whether a concept belonged to one
of two abstract semantic categories (i.e., Law orMusic) was also decoded from
the activation patterns of individual concepts. Although these abstract seman-
tic categories could be decoded based on their activation patterns, the local-
ization of this dissociation is unclear.
Neurally-based semantic dimensions underlying abstract concepts differ

from the dimensions underlying concrete concepts. Vargas and Just (2019)
investigated the fMRI activation patterns of 28 abstract concepts (e.g., ethics,
truth, spirituality) focusing on individual concept representation and the rela-
tionship between the activation profiles of these concept representations.
Factor analyses of the activation patterns evoked by the stimulus set

revealed three underlying semantic dimensions. These dimensions corres-
ponded to 1) the degree to which a concept was Verbally Represented, 2)
whether a concept was External (or Internal) to the individual, and 3) whether
the concept contained Social Content. The Verbal Representation dimension
was present across all participants and was the most salient of the semantic
dimensions. Concepts with large positive factor scores for this factor included
compliment, faith, and ethics, while concepts with large negative scores for this
factor included gravity, force, and acceleration. The former three concepts
seem far less perceptual than the latter three. For the Externality factor, a
concept that is external is one that requires the representation of the world
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outside oneself and the relative non-involvement of one’s own state. An
internal concept is one that involves the representation of the self. At one
extreme of the dimension lie concepts that are external to the self (e.g.,
causality, sacrilege, and deity). At the other extreme lie concepts that are
internal to the participant (e.g. spirituality and sadness). The last semantic
dimension was interpreted to correspond to Social Content. The concepts at
one extreme of the dimension included pride, gossip, and equality, while the
concepts at the other extreme included heat, necessity, and multiplication.
Together these semantic dimensions underlie the neural representations of
the 28 abstract concepts.

One surprising finding was that the regions associated with the Verbal
Representation dimension were the same as those found in the meta-analysis
conducted by Wang et al. (2010) that contrasted the activation between
concrete and abstract concepts. Activation in the LIFG (a region clearly
involved in verbal processing) was evoked by concepts such as faith and truth,
while the left supramarginal gyrus (LSMG) and left lateral occipital complex
(LOC), both of which are involved in different aspects of visuospatial process-
ing, were associated with concepts such as gravity and heat.

Moreover, the output of the factor analysis (i.e., factor scores) for the
Verbal Representation factor also suggested that the abstractness of the neural
patterning in these regions for an individual concept is represented as a point
on a continuum between language systems and perceptual processing systems.
This interpretation corresponds to the intuition that abstractness is not a
binary construct but rather a gradient-like translation of a concept into a
more verbal encoding. This conclusion is somewhat surprising given that the
set of 28 concepts are all qualitatively abstract, in that they have no direct
perceptual referent. The amount of activation in LIFG evoked by a given
abstract concept corresponds to its Verbal Representation factor score.

These results raise an interesting theoretical and psychological question
regarding the role of neural language systems, particularly LIFG, in the verbal
representation of abstract concepts. That is, what does it mean, neurally and
psychologically, for an abstract concept to be verbally represented?

Abstract Concepts as Verbal Representations

What does it mean for an abstract concept to be represented in regions
involved in verbal processing and to evoke activation in the LIFG? When
the LIFG is artificially lesioned through the repeated use of transcranial
magnetic stimulation (TMS), healthy participants show a 150 ms slower
response time for comprehending abstract concepts (e.g., chance) (Hoffman,
Jefferies, & Lambon Ralph, 2010). This same TMS-based lesioning procedure
showed no influence in the amount of time needed to respond to concrete
concepts (e.g., apple). However, these differences in the impact of TMS were
nullified when the abstract concepts were presented within a context (e.g.,
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“You don’t stand a chance”). These results suggest that the abstractness of a
concept is dependent on whether it requires integration of meaning across
multiple contexts (Crutch & Warrington 2005; 2010; Hoffman 2016; Hayes &
Kraemer, 2017). Moreover, the LIFG seems to be involved in the context-
dependent integration of meaning.
Given that LIFG appears to be involved in the contextualization of the

meaning of abstract concepts (Hoffman et al., 2010) and that the magnitude of
activation in LIFG is directly proportional to the degree that it is verbally
represented (Vargas & Just, 2019), taken together these results suggest that the
activation in LIFG reflects the magnitude of mental activity required to
contextualize the meaning of a lexical concept. LIFG has been shown to elicit
greater activation for sentence-level representations as compared to word-level
concepts (Xu, Kemeny, Park, Frattali, & Braun, 2005). It may be the case that
the central cognitive mechanism underlying the neural activation in LIFG
represents the integration of meaning across multiple representations in order
to form a new representation that is a product of its components. That is, the
components of meaning of apple require less computation (in LIFG) to
generate a composite representation than the concept of chance. Also, provid-
ing a context for chance, as in “You don’t stand a chance”, reduced the
cognitive workload by providing a more explicit version of its meaning.
A similar mechanism can account for the greater activation in LIFG for
sentences than for individual words, because constructing a sentence-level
representation requires combining the meanings of individual concept repre-
sentations in a mutually context-constraining way.
As previously discussed, another region involved in the integrating of

meaning for concepts is the anterior temporal lobe (ATL). ATL has been
implicated in the integration of semantic features to form a composite repre-
sentation of object concepts (Coutanche & Thompson-Schill, 2015). However,
unlike LIFG, ATL does not appear to differentiate between abstract concepts
that vary based on the degree that they are verbally represented (as defined by
their factor scores in Vargas & Just (2019)).
In sum, the integration of abstract concept representations with other

concepts in a sentence seems to require additional computation. However, it
is unclear whether these integrating computations are processing some epi-
sodic contexts (as suggested by the results of Hoffman et al., 2010), or some
specific concept representations, or use some more general amodal represen-
tational format.

Hybrid Concepts: Neither Completely Concrete nor
Completely Abstract

Hybrid concepts are concepts that can be experienced directly but
require additional processing beyond the five basic perceptual faculties to be
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evoked. These concepts do not neatly fit within the dichotomy of concrete vs.
abstract. For example, the concept envy cannot be tasted, seen, heard, smelled,
or touched, but it inarguably can be experienced as an internal event which
could have perceptual repercussions (e.g., feeling lethargic, crying). We pro-
pose that envy and other concepts referring to psychological states are hybrid.

The view of embodied cognition (Barsalou, 1999) expands upon the defin-
ition of perception beyond our five basic perceptual faculties to also include
the experiences of proprioception and emotions. Hybrid concepts fall outside
the strict realm of the sensory-perceptual but within the realm of psychological
experience as described by embodiment theory (e.g., proprioception and emo-
tion). Emotions, physics, and social concepts are not usually defined exclu-
sively with respect to their concreteness/abstractness but serve as excellent
exemplars of hybrid concepts in that they can be perceptually experienced
without evoking any of our five senses directly. Additionally, the neural
understanding of the semantic underpinning of hybrid concepts is not well
understood. The following three sections describe research investigating the
neurosemantic organization of hybrid concepts, specifically the neurosemantic
organization of emotions, physics concepts, and social concepts.

Neurosemantic Dimensions of Meaning Underlying Emotions Concepts

Meta-analyses of activation contrasts investigating emotion concepts reveal
six functional networks (Kober et al., 2008) including limbic regions (i.e.,
amygdala, hypothalamus, and thalamus), areas related to top-down executive
control function (i.e., dorsal lateral prefrontal cortex), the processing of auto-
biographical information (i.e., posterior cingulate cortex) (Klasen,
Kenworthy, Mathiak, Kircher, & Mathiak, 2011), visual association regions,
and subregions within the motor cortex (Phan, Wager, Taylor, & Liberzon,
2002). These networks suggest that emotion representations partially involve
cognitive functions related to more complex perceptual functioning (i.e.,
motion and visual association). Furthermore, the involvement of regions
related to top-down executive functioning and regions related to the process-
ing of autobiographical information suggest that emotion concepts recruit
cognitive faculties for not only basic perceptual representations but also for
higher-ordered cognitive functions. Although these findings identify regions
involved in emotion representation and processing, they do not provide insight
into how different emotions are neurally distinguished.

Recent MVPA analyses examining the neural representations of emotion
concepts have provided insight into the way the representations of different
emotions are neurally organized. Kassam, Markey, Cherkassky, Loewenstein,
and Just (2013) examined the evoked neural activation patterns of 18 emotion
concepts such as happiness, pride, envy, and sadness. The participants in this
study didn’t just think about the meaning of a presented emotion word, they
tried to evoke the emotion in themselves at that moment. Factor analyses of
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the activation profiles for the 18 emotion concepts followed by a predictive
model to validate the interpretations revealed three underlying dimensions of
meaning. The underlying semantic dimensions organize these emotions con-
cepts according to the valence of the emotion (positive or negative), its degree
of arousal (fury vs. annoyance) and degree of social involvement (i.e., whether
another person is included in the representation, as is the case for envy but not
necessarily so for sadness). Each of these dimensions of representation were
found to correspond to activation distributed across several cortical regions.
The brain locations associated with the valence of an emotion concept
included the right medial prefrontal cortex, left hippocampus, right putamen,
and the cerebellum. The brain locations associated with the arousal dimension
included the right caudate and left anterior cingulum. Finally, brain locations
associated with sociality included the bilateral cingulum and somatosensory
regions. Both univariate and multivariate approaches provided neural evi-
dence for the involvement of perceptual and higher-cognitive faculties. The
multivariate analyses provided additional insight into the dimensions along
which the individual emotion concepts are differentiated from each other. So
even though emotions are very different from object concepts, the principles
underlying their neural representations are rather similar to those of other
types of concepts.

Neurosemantic Dimensions of Meaning Underlying Physics Concepts

Research investigating the neural representation of physics concepts suggests
their neural organization somewhat reflects the physical world they refer to,
such as the movements or interactions of objects. Mason and Just (2016)
investigated the neural activation patterns of 30 elementary physics concepts
(e.g., acceleration, centripetal force, diffraction, light, refraction). Factor ana-
lyses of the activation patterns evoked by the 30 concepts revealed four
underlying semantic dimensions. These dimensions were periodicity (typified
by words such as wavelength, radio waves, frequency), causal-motion/visualiza-
tion (e.g., centripetal force, torque, displacement), energy flow (electric field,
light, direct, current, sound waves, and heat transfer), and algebraic/equation
representation (velocity, acceleration, and heat transfer) which are associated
with familiar equations.
The regions associated with each semantic dimension provide insight into

the underlying cognitive role of the region. The periodicity dimension was
associated with dorsal premotor cortex, somatosensory cortex, bilateral par-
ietal regions, and the left intraparietal sulcus. These regions have been shown
to activate for rhythmic finger tapping (Chen, Zatorre, & Penhune, 2006). The
causal-motion/visualization dimension was associated with the left intraparietal
sulcus, left middle frontal gyrus, parahippocampus, and occipital-temporal-
parietal junction. These regions have been shown to be involved in attributing
causality to the interactions between objects and data (Fugelsang & Dunbar,
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2005; Fugelsang, Roser, Corballis, Gazzaniga, & Dunbar, 2005). The alge-
braic/equations dimension includes the precuneus, left intraparietal sulcus, left
inferior frontal gyrus, and occipital lobe. These regions have been implicated
in the executive processing and integration of visuospatial and linguistic infor-
mation in calculation (Benn, Zheng, Wilkinson, Siegal, & Varley, 2012) and
more general arithmetic processing. The regions associated with energy flow
were middle temporal and inferior frontal regions. In the context of physics
concepts, these regions are attributed with representing the visual information
associated with abstract concepts (Mason & Just, 2016). Together, these
results suggest that the neural representations of physics concepts, many of
them developed only a few hundred years ago, draw on the human brain’s
ancient ability to perceive and represent physical objects and events.

Neurosemantic Dimensions of Meaning Underlying Social Concepts

Research comparing the neural representation of social concepts between
healthy controls and individuals with high-functioning autism has revealed
three semantic dimensions involved in the neural representations of social
interactions (Just et al., 2014). Participants in this study thought about the
representations of eight verbs describing social interactions (compliment,
insult, adore, hate, hug, kick, encourage, and humiliate) considered from the
perspective of either the agent or recipient of the action. Factor analyses of
neural activation profiled for these 16 concept–role combinations revealed
semantic dimensions associated with self-related cognition (hate in the agent
role and humiliate in the recipient role), social valence (adore and compliment),
and accessibility/familiarity relating to the ease or difficulty of semantic access.

The self dimension was associated with activation in the posterior cingulate:
An area commonly implicated in the processing of autobiographical infor-
mation. The social valence factor included the caudate and putamen for both
controls and individuals with autism. The accessibility/familiarity factor
included regions that are part of the default mode network, particularly
middle cingulate, right angular gyrus, and right superior medial frontal.

Because this study involved a comparison between young adult healthy
controls and participants with high-functioning ASD, it provided an import-
ant glimpse into how a psychiatric or neurological condition can systematic-
ally alter the way a certain class of concepts is thought about. The use of fMRI
neuroimaging allows the precise measurement of how a given concept is
neurally represented, and specify precisely how a condition like ASD can alter
the representation. The interesting finding was that the members of the two
participant groups could be very accurately distinguished by their neural
representations of these social interaction concepts. More specifically, the
ASD group showed a lack of a self dimension, showing little activation in
the regions associated with the self dimension in the healthy control group.
The findings suggest that when the ASD participants thought about a concept
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like hug, it involved very little thought of themselves. By contrast, the control
group thought about themselves when thinking about what hug means. Thus,
the assessment of neural representations of various classes of concepts has the
potential to identify the presence and the nature of concept alterations in
psychiatric or neurological conditions. The neurosemantic architecture of
hybrid concepts (as exemplified by emotions, physics, and social concepts)
suggests these concepts relate us with the external world (e.g., causal-motion
visualization dimension for physics concepts or self/other for social concepts).
Moreover, the neural activation associated with magnitudes of perceptual
experience are also captured by the neural representations (e.g., degree of
arousal with emotion concepts). Taken together, these results suggest that
hybrid concepts are composed, in part, of perceptual states that translate
our perceptual world into various mental states.

Commonality of Individual Concrete and Abstract Concepts
across People

The commonality across participants of the neurally-defined dimen-
sions underlying various semantic domains foreshadows one of the most
interesting findings concerning the neural representations of individual con-
cepts. The surprising finding is that the neural representations of all the
concepts studied so far are rather similar across people. This section focuses
on the commonality of individual concept representations across individuals.
The general approach to quantitatively evaluating the commonality of indi-
vidual concept representations is to train a machine learning classifier on the
labeled activation data of all but one participant for a given set of concepts,
and then to classify or make predictions concerning the concept representa-
tions of the left-out individual. In a cross-validation protocol, this process is
repeated with a different person left out on each iteration. The accuracies of
the predictions are then averaged across iterations. This averaged accuracy
measures the commonality of a set of concept representations.
This approach has shown that there is considerable commonality of the

neural representations of concepts across healthy participants. The common-
ality was present for concrete, abstract, and hybrid concepts. Decoding accur-
acies across participants were high and approximately equivalent for concrete,
abstract, and hybrid concepts (i.e., mean rank accuracy =.72 for concrete
concepts (Just et al., 2010); .74 for abstract concepts (Vargas & Just, 2019);
.71 for physics concepts (Mason & Just, 2016); .7 for emotion concepts
(Kassam et al., 2013); and .77 for social concepts (Just et al., 2014).
Although a large proportion of the concepts in a brain reading study are

accurately predicted across participants, there are always a few items at the
negative tail of the accuracy distribution, and it would be interesting to know
if the items with lower across-participant commonalities had some
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distinguishing properties. In a study of sentence decoding across three lan-
guages (Portuguese, Mandarin, and English), Yang et al. (2017) found lower
across-language, across participant decoding accuracies for concepts that are
more abstract and related to social and mental activities (e.g., happy, negoti-
ation, artist). They attributed this lower degree of commonality across lan-
guages of such items to some abstract and socially-related concept domains
being more culturally-determined.

For the set of 28 abstract concepts presented in the Vargas and Just (2019)
study, the concepts which were more prototypically abstract (e.g., sacrilege
and contract) were somewhat less accurately predicted across participants than
concepts that tend to be more hybrid (e.g., force and pride). However, there
were a number of exceptions to this trend. For example, concepts such as
anger and gossip were less well predicted than others across participants
(although still with an above-chance accuracy), and these concepts tended to
be highly instantiable. By contrast, concepts such as necessity and causality,
which are highly verbally represented, were more accurately predicted across
participants.

Relating Neuroimaging Findings and Corpus Co-
occurrence Measures

One particular class of encoding models, as was previously discussed,
attempts to relate neural representations to some well-defined feature set.
Defining the meaning of a concept in some computationally tractable way
has long been a challenge, and it is relevant here because it has the potential to
be systematically related to the neural representation of the concept. One of
the early answers to this challenge suggested that concepts can be character-
ized in terms of the concepts with which they co-occur in some large text
corpus (Landauer & Dumais, 1997). The lower dimensions (about 300) of a
large co-occurrence matrix produce a semantic vector representation of the
words in the corpus (Pennington, Socher, & Manning, 2014; Deerwester,
Dumais, Furnas, Landauer, & Harshman, 1990). The method of deriving this
lower dimensional feature space can vary, depending on the specific approach.
The utility of semantic vector representations comes from their convenience in
natural language processing applications. But can the semantic vector repre-
sentation of a concept like apple be informative about the neural representa-
tion of apple?

The semantic vector representations can be used as the predictive basis of an
encoding model. Predicted images can be generated from the learned mapping
relating brain activation data from a matrix containing semantic vectors. This
learned mapping can then be used to generate predicted brain images for
concepts with no previously collected data (Mitchell et al., 2008). This approach
provides the basis for generating a set of concept representations which can then
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be explored for its semantic properties (Pereira et al., 2018). Moreover, it
enables the study of many more concept representations than can easily be
acquired in time- and cost-limited fMRI studies. However, it is unclear whether
encoding models based on semantic vector representations illuminate the differ-
ence between concrete and abstract concepts representations.
Co-occurrence structures have also been used to evaluate the neural instan-

tiation of the associative theories of abstract concept representations. Wang
et al. (2018) utilized RSA to compare the organizational structures of
360 abstract concept representations by examining the representational struc-
ture of fMRI activation patterns across the whole brain and concept co-
occurrence properties in a large corpus. The goal was to show that each of
these viable organization principles is instantiated uniquely within the brain.
Co-occurrence properties represent the theoretical view that abstract con-

cepts are represented in terms of their association with other concepts. Their
results showed that the relationship between co-occurrence representations
and brain activity for 360 abstract concepts was largely left lateralized and
seemed to uniquely activate areas traditionally associated with language pro-
cessing such as left lateral temporal, inferior parietal, and inferior frontal
regions.

Conclusion

The understanding of how concepts are represented in the human
brain has advanced significantly based on innovations in imaging technology
and multivariate machine learning techniques. One new insight concerns how
human and self-centric concept representations are neurally structured. No
dictionary definition has specified how a hammer is to be wielded, and yet that
is an important part of how it is neurally represented. Thus, part of the neural
representation of a physical object specifies how our bodies interact with the
object (Hauk & Pulvermüller, 2004; Just et al., 2010). Part of the neural
representation of gossip specifies a social interaction. The concept of spiritual-
ity evokes self-reflection. Thus, this insight is that many neural representations
of concepts contain human-centric information in addition to
semantic information.
A second insight concerns the dependence of abstract concepts on the verbal

representations of other concepts. Representing the meaning of abstract con-
cepts may require a greater integration of meaning across multiple other
concept representations than is the case for concrete concepts. Abstract con-
cepts evoke activation in cortical regions associated with language processing,
particularly LIFG, which may reflect the neurocomputational demand for this
increased integration of meaning.
A third insight is that the semantic components of a neural representation of

a concept consist of the representations within various neural subsystems, such

464 r. vargas and m. a. just

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635462.029
Downloaded from https://www.cambridge.org/core. Carnegie Mellon University, on 15 Sep 2021 at 00:03:10, subject to the Cambridge Core terms of use, available at



as the motor system, the social processing system, and the visual system. These
neural subsystems constitute the neural indexing or organizational system.

A fourth insight concerns the remarkable degree of commonality of neural
representations across people and languages. Although concept representa-
tions phenomenologically seem very individualized, the neural representations
indicate very substantial commonality, while still leaving room for some
individuality. The commonality probably arises from the commonality of
human brain structures and their capabilities, and from commonalities in
our environment. We all have a motor system for controlling our hands, and
all apples have a similar shape, so our neural representations of holding an
apple are similar.

A fifth insight is that the principles regarding the neural representations of
physical objects extend without much modification to more concrete and
hybrid concepts. Although it is easy to see why the concept of apple is similarly
neurally represented in all of us, it is more surprising that an emotion like
anger evokes a very similar activation pattern in all of us. Moreover, even
abstract concepts like ethics have a systematic neural representation that is
similar across people.

Although there is much more to human thought than the representation of
concepts, these representations constitute an important set of building blocks
from which thoughts are constructed. The neuroimaging of these concept
representations reveals several of their important properties as well as hints
as to how they might combine to form more complex thoughts.

Acknowledgments

This research was supported by the Office of Naval Research Grant
N00014–16-1-2694.

References

Anderson, A. J., Kiela, D., Clark, S., & Poesio, M. (2017). Visually grounded and
textual semantic models differentially decode brain activity associated with
concrete and abstract nouns. Transactions of the Association for
Computational Linguistics, 5, 17–30.

Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22
(4), 577–660.

Barsalou, L. W. (2003). Abstraction in perceptual symbol systems. Philosophical
Transactions of the Royal Society B: Biological Sciences, 358(1435),
1177–1187. doi.org/10.1098/rstb.2003.1319

Benn, Y., Zheng, Y., Wilkinson, I. D., Siegal, M., & Varley, R. (2012). Language in
calculation: A core mechanism? Neuropsychologia, 50(1), 1–10. https://doi
.org/10.1016/j.neuropsychologia.2011.09.045

The Neural Representation of Concrete and Abstract Concepts 465

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635462.029
Downloaded from https://www.cambridge.org/core. Carnegie Mellon University, on 15 Sep 2021 at 00:03:10, subject to the Cambridge Core terms of use, available at



Brysbaert, M., Warriner, A. B., & Kuperman, V. (2014). Concreteness ratings for
40 thousand generally known English word lemmas. Behavior Research
Methods, 46(3), 904–911. https://doi.org/10.3758/s13428-013-0403-5

Chen, J. L., Zatorre, R. J., & Penhune, V. B. (2006). Interactions between auditory and
dorsal premotor cortex during synchronization tomusical rhythms.NeuroImage,
32(4), 1771–1781. https://doi.org/10.1016/j.neuroimage.2006.04.207

Clarke, A., Taylor, K. I., Devereux, B., Randall, B., & Tyler, L. K. (2013). From
perception to conception: How meaningful objects are processed over time.
Cerebral Cortex, 23(1), 187–197. https://doi.org/10.1093/cercor/bhs002

Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic
processing. Psychological Review, 82(6), 407–428. https://doi.org/10.1037/
0033-295X.82.6.407

Coutanche, M. N., & Thompson-Schill, S. L. (2015). Creating concepts from conver-
ging features in human cortex. Cerebral Cortex, 25(9), 2584–2593. https://doi
.org/10.1093/cercor/bhu057

Crutch, S. J., & Warrington, E. K. (2005). Abstract and concrete concepts have
structurally different representational frameworks. Brain, 128(3), 615–627.
https://doi.org/10.1093/brain/awh349

Crutch, S. J., & Warrington, E. K. (2010). The differential dependence of abstract and
concrete words upon associative and similarity-based information:
Complementary semantic interference and facilitation effects. Cognitive
Neuropsychology, 27(1), 46–71. https://doi.org/10.1080/02643294.2010.491359

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R.
(1990). Indexing by latent semantic analysis. Journal of the Association for
Information Science and Technology, 41(6), 391–407.

Fugelsang, J. A., & Dunbar, K. N. (2005). Brain-based mechanisms underlying
complex causal thinking. Neuropsychologia, 43(8), 1204–1213. https://doi
.org/10.1016/j.neuropsychologia.2004.10.012

Fugelsang, J. A., Roser, M. E., Corballis, P. M., Gazzaniga, M. S., & Dunbar, K. N.
(2005). Brain mechanisms underlying perceptual causality. Cognitive Brain
Research, 24(1), 41–47. https://doi.org/10.1016/j.cogbrainres.2004.12.001

Grill-Spector, K., & Malach, R. (2004). The human visual cortex. Annual Review of
Neuroscience, 27(1), 649–677. https://doi.org/10.1146/annurev.neuro.27
.070203.144220

Hauk, O., & Pulvermüller, F. (2004) Neurophysiological distinction of action words in
the fronto-central cortex. Human Brain Mapping, 21(3), 191–201.
DOI: 10.1002/hbm.10157

Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P.
(2001). Distributed and overlapping representations of faces and objects in
ventral temporal cortex, Science, 293(5539), 2425–2430. doi: 10.1126/
science.1063736.

Hayes, J. C., & Kraemer, D. J. M. (2017). Grounded understanding of abstract
concepts: The case of STEM learning. Cognitive Research: Principles and
Implications, 2(1), 7. https://doi.org/10.1186/s41235-016-0046-z

Haynes, J. D., & Rees, G. (2006). Decoding mental states from brain activity in
humans. Nature Reviews Neuroscience, 7(7), 523–534. https://doi.org/10
.1038/nrn1931

466 r. vargas and m. a. just

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635462.029
Downloaded from https://www.cambridge.org/core. Carnegie Mellon University, on 15 Sep 2021 at 00:03:10, subject to the Cambridge Core terms of use, available at



Hoffman, P. (2016). The meaning of “life” and other abstract words: Insights from
neuropsychology. Journal of Neuropsychology, 10(2), 317–343. https://doi
.org/10.1111/jnp.12065

Hoffman, P., Jefferies, E., & Lambon Ralph, M. A. (2010). Ventrolateral prefrontal
cortex plays an executive regulation role in comprehension of abstract words:
Convergent neuropsychological and repetitive TMS evidence. Journal of
Neuroscience, 30(46), 15450–15456. https://doi.org/10.1523/JNEUROSCI
.3783-10.2010

Huth, A. G., De Heer, W. A., Griffiths, T. L., Theunissen, F. E., & Gallant, J. L.
(2016). Natural speech reveals the semantic maps that tile human cerebral
cortex. Nature, 532(7600), 453–458. https://doi.org/10.1038/nature17637

Just, M. A., Cherkassky, V. L., Aryal, S., & Mitchell, T. M. (2010). A neurosemantic
theory of concrete noun representation based on the underlying brain codes.
PLoS ONE, 5(1), e8622. https://doi.org/10.1371/journal.pone.0008622

Just, M. A., Cherkassky, V. L., Buchweitz, A., Keller, T. A., & Mitchell, T. M. (2014).
Identifying autism from neural representations of social interactions:
Neurocognitive markers of autism. PLoS ONE, 9(12), e113879. https://doi
.org/10.1371/journal.pone.0113879

Kassam, K. S., Markey, A. R., Cherkassky, V. L., Loewenstein, G., & Just, M. A.
(2013). Identifying emotions on the basis of neural activation. PLoS ONE, 8
(6), e66032. https://doi.org/10.1371/journal.pone.0066032

Klasen, M., Kenworthy, C. A., Mathiak, K. A., Kircher, T. T. J., & Mathiak, K.
(2011). Supramodal representation of emotions. Journal of Neuroscience, 31
(38), 13635–13643. https://doi.org/10.1523/JNEUROSCI.2833-11.2011

Kober, H., Barrett, L. F., Joseph, J., Bliss-Moreau, E., Lindquist, K., & Wager, T. D.
(2008). Functional grouping and cortical–subcortical interactions in emotion.
NeuroImage, 42(2), 998–1031. https://doi.org/10.1016/j.neuroimage.2008.03
.059

Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional
brain mapping. Proceedings of the National Academy of Sciences of the United
States of America, 103(10), 3863–3868. https://doi.org/10.1073/pnas
.0600244103

Kriegeskorte, N., Mur, M., & Bandettini, P. (2008a). Representational similarity
analysis – Connecting the branches of systems neuroscience. Frontiers in
Systems Neuroscience, 2(11), 1–28. https://doi.org/10.3389/neuro.06.004.2008

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., . . .

Bandettini, P. A. (2008b). Matching categorical object representations in
inferior temporal cortex of man and monkey. Neuron, 60(6), 1126–1141.
https://doi.org/10.1016/j.neuron.2008.10.043

Lambon Ralph, M. A. (2014). Neurocognitive insights on conceptual knowledge and
its breakdown. Philosophical Transactions of the Royal Society B: Biological
Sciences, 369(1634), 20120392. https://doi.org/10.1098/rstb.2012.0392

Landauer, T. K., & Dumas, S. T. (1997) A solution to Plato’s problem: The latent
semantic analysis theory of acquisition, induction, and representation of
knowledge. Psychological Review, 104(2), 211–240.

Martin, A. (2007). The representation of object concepts in the brain. Annual Review of
Psychology, 58, 25–45.

The Neural Representation of Concrete and Abstract Concepts 467

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635462.029
Downloaded from https://www.cambridge.org/core. Carnegie Mellon University, on 15 Sep 2021 at 00:03:10, subject to the Cambridge Core terms of use, available at



Mason, R. A., & Just, M. A. (2016). Neural representations of physics concepts.
Psychological Science, 27(6), 904–913. https://doi.org/10.1177/
0956797616641941

Meyer, K., & Damasio, A. (2009). Convergence and divergence in a neural architec-
ture for recognition and memory. Trends in Neurosciences, 32(7), 376–382.
https://doi.org/10.1016/j.tins.2009.04.002

Mitchell, T. M., Shinkareva, S. V., Carlson, A., Chang, K. M., Malave, V. L., Mason,
R. A., & Just, M. A. (2008). Predicting human brain activity associated with
the meanings of nouns. Science, 320(5880), 1191–1195. https://doi.org/10
.1126/science.1152876

Mur, M., Bandettini, P. A., & Kriegeskorte, N. (2009). Revealing representational
content with pattern-information fMRI – An introductory guide. Social
Cognitive and Affective Neuroscience, 4(1), 101–109. https://doi.org/10.1093/
scan/nsn044

Naselaris, T., Kay, K. N., Nishimoto, S., & Gallant, J. L. (2011). Encoding and
decoding in fMRI. Neuroimage, 56(2), 400–410.

Nishimoto, S., Vu, A. T., Naselaris, T., Benjamini, Y., Yu, B., & Gallant, J. L. (2011).
Reconstructing visual experiences frombrain activity evoked by natural movies.
Current Biology, 21(19), 1641–1646. https://doi.org/10.1016/j.cub.2011.08.031

Pennington, J., Socher, R., &Manning, C. D. (2014). GloVe: Global Vectors for Word
Representation. Proceedings of the Conference on Empirical Methods in
Natural Language Processing, 1532–1543.

Pereira, F., Lou, B., Pritchett, B., Ritter, S., Gershman, S. J., Kanwisher, N., . . .
Fedorenko, E. (2018). Toward a universal decoder of linguistic meaning from
brain activation. Nature Communications, 9(1), 963. https://doi.org/10.1038/
s41467-018-03068-4

Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy
of emotion: A meta-analysis of emotion activation studies in PET and fMRI.
NeuroImage, 16(2), 331–348. https://doi.org/10.1006/nimg.2002.1087

Vargas, R., & Just, M. A. (2019). Neural representations of abstract concepts:
Identifying underlying neurosemantic dimensions. Cerebral Cortex, 30(4),
2157–2166. https://doi.org/10.1093/cercor/bhz229

Wang, J., Conder, J. A., Blitzer, D. N., & Shinkareva, S. V. (2010). Neural representa-
tion of abstract and concrete concepts: A meta-analysis of neuroimaging
studies. Human Brain Mapping, 31(10), 1459–1468. https://doi.org/10.1002/
hbm.20950

Wang, X., Wu, W., Ling, Z., Xu, Y., Fang, Y., Wang, X., . . . Bi, Y. (2018).
Organizational principles of abstract words in the human brain. Cerebral
Cortex, 28(12), 4305–4318. https://doi.org/10.1093/cercor/bhx283

Xu, J., Kemeny, S., Park, G., Frattali, C., & Braun, A. (2005). Language in context:
Emergent features ofword, sentence, and narrative comprehension.NeuroImage,
25(3), 1002–1015. https://doi.org/10.1016/j.neuroimage.2004.12.013

Yang, Y., Wang, J., Bailer, C., Cherkassky, V., & Just, M. A. (2017). Commonality of
neural representations of sentences across languages: Predicting brain acti-
vation during Portuguese sentence comprehension using an English-based
model of brain function. NeuroImage, 146, 658–666. https://doi.org/10.1016/
j.neuroimage.2016.10.029

468 r. vargas and m. a. just

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635462.029
Downloaded from https://www.cambridge.org/core. Carnegie Mellon University, on 15 Sep 2021 at 00:03:10, subject to the Cambridge Core terms of use, available at


