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Previous studies have succeeded in identifying the cognitive state corresponding to the perception of a set of depicted
categories, such as tools, by analyzing the accompanying pattern of brain activity, measured with fMRI. The current research
focused on identifying the cognitive state associated with a 4s viewing of an individual line drawing (1 of 10 familiar objects, 5
tools and 5 dwellings, such as a hammer or a castle). Here we demonstrate the ability to reliably (1) identify which of the 10
drawings a participant was viewing, based on that participant’s characteristic whole-brain neural activation patterns, excluding
visual areas; (2) identify the category of the object with even higher accuracy, based on that participant’s activation; and (3)
identify, for the first time, both individual objects and the category of the object the participant was viewing, based only on
other participants’ activation patterns. The voxels important for category identification were located similarly across
participants, and distributed throughout the cortex, focused in ventral temporal perceptual areas but also including more
frontal association areas (and somewhat left-lateralized). These findings indicate the presence of stable, distributed,
communal, and identifiable neural states corresponding to object concepts.
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INTRODUCTION
It has been a lasting challenge to establish the correspondence

between a simple cognitive state (such as the thought of a hammer) and

the underlying brain activity. Moreover, it is unknown whether the

correspondence is the same across individuals. A recent approach to

studying brain function uses machine learning techniques to identify

the neural pattern of brain activity underlying various thought

processes. Previous studies using a machine learning approach have

been able to identify the cognitive states associated with viewing an

object category, such as houses [1,2,3,4,5,6,7,8]. The central char-

acteristic of this approach (compared to a conventional statistical

parametric mapping-like approach) is its identification of a multi-

variate pattern of voxels and their characteristic activation levels that

collectively identify the neural response to a stimulus. These machine

learning methods have the potential to be particularly useful in

uncovering how semantic information about objects is represented in

the cerebral cortex because they can determine the topographic

distribution of the activation and distinguish the content of the

information in various parts of the cortex. In the study reported

below, the neural patterns associated with individual objects as well as

with object categories [9] were identified using a machine learning

algorithm applied to activation distributed throughout the cortex.

This study also investigated the degree to which objects and

categories are similarly represented neurally across different people.

We analyzed the brain activity of participants who were viewing

a line drawing of an object from the categories of tools or dwellings,

of the type shown in Figure 1. We were able to train classifiers to

identify which of ten object exemplars and two object categories a

participant was viewing. We discovered a common neural pattern

across participants, and used this to train a classifier to identify the

correct object category and object exemplar from the fMRI data

of new participants who were not involved in training the classifier.

MATERIALS AND METHODS

Participants
Twelve right-handed adults (8 female) from the Carnegie Mellon

community participated and gave written informed consent

approved by the University of Pittsburgh and Carnegie Mellon

Institutional Review Boards. Six additional participants were

excluded from the analysis due to head motion greater than 2.5 mm.

Experimental paradigm
The stimuli depicted concrete objects from two semantic

categories (tools and dwellings), and took the form of white line

drawings on a black background. There were five exemplars per

category; the objects were drill, hammer, screwdriver, pliers, saw,

apartment, castle, house, hut, and igloo. The drawings of the ten objects

were presented six times (in six random permutation orders) to

each participant. Participants were asked to think of the same

object properties each time they saw a given object, to encourage

activation of multiple attributes of the depicted object, in addition

to those used for visual recognition. The intention was to foster the

retrieval and assessment of the most salient properties of an object.

To ensure that each participant had a consistent set of properties

to think about, he or she was asked to generate a set of properties

for each exemplar prior to the scanning session (such as cold,

knights, and stone for castle). However, nothing was done to elicit

consistency across participants.

Each stimulus was presented for 3s, followed by a 7s rest period,

during which the participants were instructed to fixate on an X
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displayed in the center of the screen. There were six additional

presentations of a fixation X, 21s each, distributed across the

session to provide a baseline measure of activation. A schematic

representation of the presentation timing is shown in Figure 1.

fMRI procedure
Functional images were acquired on a Siemens Allegra 3.0T

scanner (Siemens, Erlangen, Germany) at the Brain Imaging

Research Center of Carnegie Mellon University and the

University of Pittsburgh using a gradient echo EPI pulse sequence

with TR = 1000 ms, TE = 30 ms, and a 60u flip angle. Seventeen

5-mm thick oblique-axial slices were imaged with a gap of 1 mm

between slices. The acquisition matrix was 64664 with

3.12563.12565 mm3 voxels.

fMRI data processing and analysis
Data processing and statistical analysis were performed with

Statistical Parametric Mapping software (SPM99, Wellcome

Department of Imaging Neuroscience, London, UK). The data

were corrected for slice timing, motion, linear trend, and were

temporally smoothed with a high-pass filter using a 190 s cutoff.

The data were normalized to the Montreal Neurological Institute

(MNI) template brain image using a 12-parameter affine

transformation. Group contrast maps were constructed using a

height threshold of p,0.001 (uncorrected) and an extent threshold

of 160 voxels, resulting in the cluster-level threshold of p,0.05,

corrected for multiple comparisons.

Analyses of a single brain region at a time used region

definitions derived from the Anatomical Automatic Labeling

(AAL) system [10]. In addition to existing AAL regions, left and

right intraparietal sulcus (IPS) regions were defined, and superior,

middle, and inferior temporal gyrus regions were separated into

anterior, middle, and posterior sections based on planes F and D

from the Rademacher scheme [11], for a total of 71 regions.

The data were prepared for machine learning methods by

spatially normalizing the images into MNI space and resampling

to 36366 mm3 voxels. Voxels outside the brain or absent from at

least one participant were excluded from further analysis. The

percent signal change (PSC) relative to the fixation condition was

computed at each voxel for each object presentation. The mean

PSC of the four images acquired within a 4s window, offset 4s

from the stimulus onset (to account for the delay in hemodynamic

response) provided the main input measure for the machine

learning classifiers. The PSC data for each object-presentation

were further normalized to have mean zero and variance one to

equalize the between-participants variation in exemplars.

Machine learning methods
Classifiers were trained to identify cognitive states associated with

viewing drawings, using the evoked pattern of functional activity

(mean PSC). Classifiers were functions f of the form: f: mean_PSCRYj,

j = 1, ..., m, where Yj were either categories (tools, dwellings) or ten

exemplars (hammer, pliers, ..., house), where m was either 2 or 10,

accordingly, and where mean_PSC was a vector of mean PSC voxel

activations. To evaluate classification performance, trials were

divided into disjoint training and test sets. Prior to classification,

relevant features (voxels) were extracted (as described below) to

reduce the dimensionality of the data, using only the training set for

this selection. A classifier was built from the training set, using these

selected features. Classification performance was then evaluated on

only the left-out test set, to ensure unbiased estimation of the

classification error. Our previous exploration indicated that several

feature selection methods and classifiers produce comparable results.

Here we report results from one feature selection method and one

classifier, chosen for simplicity.

Feature selection
Feature selection first identified the voxels whose responses were

the most stable over six presentations of objects within a

participant, and then selected from among the stable voxels those

that best discriminated among objects within the training set, using

only the data in the training set. The 400 most stable voxels were

selected, where voxel stability was computed as the average

pairwise correlation between 10-object vectors across six presen-

tations. In the second step, all of the stable voxels were assessed for

how discriminating they were, by training a logistic regression

classifier to discriminate among object exemplars or categories on

various subsets of only the training set. Finally, from among the

400 voxels selected for stability, discriminating subsets of sizes 10,

25, 50, 75, 100, 200, and 400 voxels were selected based on having

the highest (absolute valued) regression weights in the logistic

regression. Locations of these selected voxels (henceforth,

diagnostic voxels) were visualized on a standard brain template

using MRIcro [12].

Figure 1. Schematic depiction of presentation timing.
doi:10.1371/journal.pone.0001394.g001
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Classification
The Gaussian Naı̈ve Bayes (GNB) pooled variance classifier was

used [13]. It is a generative classifier that models the joint

distribution of a class Y and attributes X, and assumes the

attributes X1, ..., Xn are conditionally independent given Y. The

classification rule is:

Y/ arg max
yj

P(Y~yj)P
i

P(XijY~yj):

In this experiment classes were equally frequent. Classification results

were evaluated using k-fold cross-validation, where one example per

class was left out for each fold. For each participant, a classifier was

trained to identify either which of 10 object exemplars or which of

two object categories that participant was viewing, based on only 4 s

of fMRI data per object presentation. In all analyses, the accuracy of

identification was based only on test data that was completely disjoint

from the training data. With a two-class classification problem, the

chance level is 0.5. With the ten-class classification problem, rank

accuracy was used [13]. The list of potential classes was rank-ordered

from most to least likely, and the normalized rank of a correct class in

a sorted list was computed. Rank accuracy ranges from 0 to 1, and

the chance level is 0.5.

Peak classification accuracy over the previously defined subsets

having different numbers of voxels, e.g., 10, 25, ..., 400, was

reported. To evaluate the statistical significance of this observed

classification accuracy, the result was compared to a permutation

distribution. For each of the 1,000 non-informative permutations

of labels in the training set, permutation classification accuracies

for every set of features were computed, and the best permutation

accuracy over the subsets with different numbers of voxels was

recorded. The observed accuracy was then compared to the

distribution of recorded permutation classification accuracies; if

the observed accuracy had a p-value of at most 0.001, then the

result was considered statistically significant.

Analyses of a single brain region at a time
Single anatomical brain regions that consistently identified object

exemplars or categories across participants were selected using cross-

validation, and the significance of those identifications was tested

across participants. Within each participant, a cross-validated

accuracy for each region was computed by a logistic regression

classifier using all the voxels from that anatomical region. The mean

classification accuracy was computed for each anatomical region

across participants, and compared to a binomial distribution. The

obtained p-values (computed using a normal approximation) were

compared to the level of significance a = 0.001, using the Bonferroni

correction to account for the multiple comparisons.

Analysis of the confusion patterns
Single brain regions were compared in terms of their confusion

patterns using a generalization of the principal components analysis

method [14,15]. Within each participant, for each of the selected

regions, a confusion matrix was constructed based on the most likely

prediction of the classifier. Next, a regions-by-regions dissimilarity

matrix was constructed for each participant, where the dissimilarity

between any two anatomical regions was measured as one minus the

correlation coefficient of the off-diagonal elements of the correspond-

ing confusion matrices. Each dissimilarity matrix was transformed to

a cross-product matrix and normalized by the first eigenvalue.

A compromise matrix, representing the agreement across

participants, was constructed as a weighted average of all the

participants’ regions-by-regions cross-product matrices. Partici-

pants’ weights were computed from the first principal component

of the participants-by-participants similarity matrix (the first

principal component is proportional to the mean of the participant

matrices). Each entry in the participants-by-participants similarity

matrix was computed by the RV-coefficient [16], which is a

multivariate extension of the Pearson correlation coefficient, and

indicates the overall similarity of the two matrices:

RV (X ,Y )~
tr(XY 0YX 0)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tr(XX 0)2tr(YY 0)2
q :

The RV-coefficient has been previously used in the fMRI

literature [17,18]. The compromise matrix was further analyzed

by principal components analysis.

Multiple participant analysis
Data from all but one participant were used to train a classifier to

identify the data from the left-out participant. This process was

repeated so that it reiteratively left out each of the participants.

Feature selection was done by pooling the data of all participants

but the one left out. Discriminating voxel subsets of sizes 10, 25,

50, 75, 100, 200, 400, 1000, and 2000 were selected on the basis of

logistic regression weights.

RESULTS

Identifying object exemplars: whole brain
The highest rank accuracy achieved for any participant while

identifying individual object exemplars was 0.94. (The identifica-

tion process obtained this rank accuracy by correctly identifying

the object on its first-ranked guess in 40 out of 60 presentations, on

its second-ranked guess in 10 presentations, and on its third- and

fourth-ranked guesses in 10 other presentations.) Reliable

(p,0.001) classification accuracy for individual object exemplars

was reached for eleven out of twelve participants (as shown by the

filled bars in Figure 2). The mean classification rank accuracy over

all 12 participants was 0.78 (SD = 0.11).

The locations of voxels that underpinned this accurate object

exemplar identification (i.e., the diagnostic voxels), were similar (at a

gyral level) across participants, and were distributed across the cortex

(as shown in Figure 3). They were located in the left inferior frontal

gyrus (LIFG), left inferior parietal lobule (LIPL), and bilateral medial

frontal gyrus, precentral gyrus, posterior cingulate, parahippocampal

gyrus, cuneus, lingual gyrus, fusiform gyrus, superior parietal lobule

(SPL), superior temporal gyrus, and middle temporal gyrus. The

number of voxels (each 3.12563.12566 mm3 or 59 mm3 in volume)

for which object exemplar identification accuracy was greatest (as

plotted in Figure 2) ranged from 25 to 400 voxels, depending on the

participant (Table S1). (Although the results are reported here for

voxel set sizes that have been tuned for individual participants, the

results are not substantially different when a fixed set size of voxels is

used for item and category classification, within and between

participants. For example, for the within-participant identification of

individual items, the mean accuracy (over participants) decreases by

2.7% (from 0.78) when a fixed size of 120 voxels is used for all

participants. Thus, the optimization of voxel set size is not critical to

our main arguments, and a modal fixed value of 120 voxels can

provide similar outcomes.)

Identifying object exemplars: single brain regions
Previous studies have focused on one particular region, the ventral

temporal cortex, in an attempt to relate cognitive states to activation

patterns in a particular region (e.g., [7]; Sayres, Ress, and Grill-
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Spector, 2005, in Proceedings of Neural Information Processing

Systems). To determine whether it was possible to identify cognitive

states on the basis of the activation in only a single brain region,

classifiers were trained using voxels from only one anatomical region

(such as LIFG) at a time. The accuracies obtained in this ancillary

analysis were surprisingly high. For example, for one participant

whose object exemplar identification accuracy based on the whole

cortex was 0.94, the single-region accuracy was 0.77 for left superior

extrastriate (SES), 0.77 for LIPL, and 0.82 for left inferior extrastriate

cortex (IES). The regions that generated reliable accuracies across

participants in this single-region identification were bilateral SES,

IES, calcarine sulcus, fusiform gyrus, IPS, left IPL, posterior

superior, middle and inferior temporal gyri, postcentral gyrus, and

hippocampus. Thus, many brain regions contain information about

the object exemplars.

These analyses provide two important clues about object

representations in the cortex. First, they indicate that the

discrimination of objects was not just mediated by basic retinotopic

representations in the visual cortex, or by eye movements. Other

brain areas also carry reliable information about individual tools and

dwellings, demonstrating that the exemplar identification can be

based on the neural representations of higher-level facets of the

object properties. Second, they indicate that the activation of many

regions individually can discriminate among exemplars, thus

providing an important clue concerning the neural representations

in different regions, which we explore below.

Figure 2. High classification rank accuracies for object exemplars. Reliable (p,0.001) accuracies for the classification of object exemplars within
participants (filled bars) were reached for eleven out of twelve participants, and reliable (p,0.001) accuracies for the classification of object exemplars
when training on the union of data from eleven participants (unfilled bars) were reached for eight out of twelve participants. The dashed line
indicates the highest mean of the permutation distribution across participants under the null hypothesis of no difference, i.e., chance level, among
object exemplars for cross-participants object exemplar identification.
doi:10.1371/journal.pone.0001394.g002

Figure 3. Locations of the diagnostic voxels in object exemplar classification for the three participants having the highest accuracies are shown
on the three-dimensional rendering of the T1 MNI single-subject brain. Yellow ellipses indicate the commonality of the voxel locations for object
identification in LIPL across participants.
doi:10.1371/journal.pone.0001394.g003
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Identifying object categories: whole brain
A classifier was trained to decode which category that the object a

participant was viewing belonged to, i.e., whether it was a tool or a

dwelling. Accuracies of at least 0.97 (correct category identification

in at least 58 out of 60 object presentations) were attained for four

of the participants, including perfect accuracy for one of the

participants (correct category identification in 60 out of 60 object

presentations) (filled bars in Figure 4). Reliable (p,0.001)

classification accuracies were reached for all participants. The

mean classification accuracy for category identification across

twelve participants was 0.87 (SD = 0.10).

The locations of the diagnostic voxels were distributed across

the cortex. Similarity across participants in the locations of these

diagnostic voxels is illustrated in Figure 5. The cortical locations of

these voxels provide some face validity for the approach, because

they are in areas previously associated with mental functions that

bear a good correspondence to the stimuli used here. For example,

voxels contributing to the identification of tools were mostly in the

left hemisphere, and the largest subsets were located in the ventral

premotor cortex and posterior parietal cortex. These areas were

previously implicated in motor representation associated with tool

usage [19,20,21]. Some of the voxels contributing to the

Figure 4. High classification accuracies for object categories. Reliable (p,0.001) accuracies for classification of objects by category (filled bars) were
reached for all participants and reliable (p,0.001) accuracies for classification of objects by category when training on the union of data from eleven
participants (unfilled bars) were reached for ten out of twelve participants. The dashed line indicates the highest mean of the permutation distribution
across participants under the null hypothesis of no difference among the categories (i.e., chance level) for cross-participants category identification.
doi:10.1371/journal.pone.0001394.g004

Figure 5. Commonality in voxel locations across the three participants having the highest category classification accuracies. Voxel locations for
the tools category are shown in red, and voxel locations for the dwellings category are shown in blue on the three-dimensional rendering of the T1
MNI single-subject brain. Yellow ellipses indicate commonality in voxel locations for the tools category in LIPL across participants.
doi:10.1371/journal.pone.0001394.g005
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identification of dwellings were located in the right parahippocampal

gyrus and were within 9 mm of the previously reported para-

hippocampal place area (PPA) [22]. The number of voxels for which

the object category identification accuracy was greatest ranged from

10 to 100 voxels, depending on the participant (Table S2). For

comparison, SPM contrast maps showing areas of greater activity for

the objects compared to fixation, and for tools compared to dwellings,

are shown in Figure 6. Similar to the locations of the diagnostic

voxels, the activation for tools relative to dwellings was left-lateralized,

and included posterior parietal cortex. In the machine learning

analysis, the spatial distribution of the diagnostic voxels was more

fine-grained, with some spatial interspersing of voxels between

categories, compared to the SPM contrasts.

Identifying object categories: single brain regions
As was the case for exemplar identification, the accuracies of the

category identification using voxels from only a single anatomical

region were high; in some cases, these approached the accuracy

obtained when the whole cortex was used (0.93 for left IES cortex,

0.83 for left SES cortex, and 0.82 for LIPL, vs. 0.98 for the whole

cortex, for one of the participants). The regions that generated

reliable accuracies across participants in this single-region

identification analysis were bilateral SES, calcarine, IES, SPL,

IPL, IPS, fusiform, posterior superior and middle temporal,

posterior inferior temporal gyri, cerebellum, and left precentral,

superior frontal, inferior frontal triangularis, insula, and postcen-

tral gyri (Table 1). Although the semantic category of the objects

can be accurately identified on the basis of a single region, it is

even more accurately identified when the whole cortex is taken

into account. Similarly to the case of identifying individual object

exemplars, reliable information about tools and dwellings categories

resides not only in low-level visual brain areas but also in brain

areas that are typically associated with higher-level properties.

The results above, along with previously published results,

indicate that an object is encoded by a pattern of brain activation

that is broadly distributed across the brain. The fact that it is

possible to accurately identify the stimuli based on several different

single regions alone raises a question of whether multiple brain

regions redundantly encode the same information about the

object, or whether each part of the brain encodes somewhat

different information, reflecting its specialization. One way to

compare the content of the neural representations in different

regions is to compare the object confusion errors (incorrect first

Figure 6. Brain activation showing areas of greater activity for (A) objects compared to fixation, and (B) tools compared to dwellings. Activation
is projected onto a surface rendering.
doi:10.1371/journal.pone.0001394.g006

Table 1. Anatomical regions (out of 71) that singly produced
reliable average classification accuracies across the twelve
participants for category identification.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Label Region

LPRECENT

L Precentral gyrus

LSUPFRONT

L Superior frontal gyrus

LTRIA

L Inferior frontal gyrus, triangular part

LINSULA

L Insula, rolandic operculum

LCALC, RCALC

L/R Calcarine fissure

LSES, RSES L/R Cuneus, superior occipital, middle occipital gyri

LIES, RIES

L/R Inferior occipital, lingual gyri

LFUSIFORM,
RFUSIFORM

L/R Fusiform gyrus

LPOSTCENT

L Postcentral gyrus

LSPL, RSPL L/R Superior parietal gyrus, precuneus, paracentral lobule

LIPL, RIPL L/R Inferior parietal, supramarginal, angular gyri

LIPS, RIPS

L/R Intraparietal sulcus

LSTPOS, RSTPOS L/R Posterior superior temporal, posterior middle
temporal gyri

LITPOS, RITPOS

L/R Posterior inferior temporal gyrus

LCBEL, RCBEL L/R Cerebellum

L indicates left, and R indicates right hemisphere.
doi:10.1371/journal.pone.0001394.t001..
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guesses) that the classifier makes when it uses input from various

single regions, such as misidentifying a hammer as a drill based on

only the left calcarine sulcus.

Suggestive evidence that the regions systematically differ from

each other in terms of the confusion errors they generate was

obtained from a principal components analysis (PCA) of the single

regions’ dissimilarity matrix. This matrix was constructed as a

weighted average across participants (and captured 51% of the

variability in the data, despite considerable variation among

participants in their region-specific confusion matrices). When the

confusion matrices generated by various single-region classifica-

tions were compared, a number of systematicities emerged,

indicating that in fact the different regions were encoding different

information. For example, a set of visual regions (CALC,

FUSIFORM, IES, SES) were similar to each other with respect

to the confusion errors that they generated, and they differed from

a set of frontal regions (SUPFRONT, TRIA, PRECENT) in terms

of their confusion errors. Figure 7 shows that a PCA of the

dissimilarity of the regions’ individual confusion errors produces

separation of the regions, interpretable in terms of their

anatomical locations, indicating that the brain activation that is

used in identification differs qualitatively and systematically across

regions, such as the posterior visual regions differing from frontal

regions.

Another observation arising from this principal components

analysis was that bilaterally homologous regions were similar to

each other with respect to confusion errors, despite being

physically distant from each other, suggesting that they represent

and process rather similar information. This observation applies to

most regions except for the frontal cortex, where the activation in

the two hemispheres was more distinct and more left-lateralized.

The PCA indicates that there are regularities to be explored, and

other methods, such as repetition priming [23,24,25] may

additionally be useful to further illuminate which object properties

are represented in various regions.

Commonality of neural representations across

participants
Classifiers were trained on data from 11 of the 12 participants to

determine if it was possible to identify object exemplars and

categories in the held-out 12th participant’s data; this procedure

was repeated for all participants. For object exemplars, reliable

(p,0.001) identification accuracies were reached for eight out of

twelve participants (unfilled bars in Figure 2). The highest

exemplar identification rank accuracy obtained in this leave-one-

participant-out method was 0.81 for one of the participants

(compared to an accuracy of 0.53 from random predictions). The

number of voxels for which the cross-participant object exemplar

identification accuracy was greatest ranged from 50 to 2000

voxels, depending on the participant (Table S1).

For cross-participant identification of the object category, the

highest rank accuracy obtained for one of the participants was 0.97

(the category was correctly identified on the first guess in 58 out of

60 object presentations) (unfilled bars in Figure 4). The classifier

achieved reliable (p,0.001) accuracy in ten out of twelve

participants. The mean accuracy across participants was 0.82

(SD = 0.09). The number of voxels for which the cross-participant

category identification accuracy was greatest ranged from 10 to

2000 voxels, depending on the participant (Table S2). Voxel-by-

voxel synchronization between individuals has been previously

shown during movie watching [26]. The new result demonstrates

the ability to identify the category of the object (and to some

extent, the specific object) that a participant was viewing based on

the neural signature derived from a set of other participants’

activations. This finding indicates that much of the activation

pattern that enables the identification of a cognitive state has a

high degree of commonality across participants.

DISCUSSION
The two main conceptual advances offered by these findings are

that there is an identifiable neural pattern associated with

perception and contemplation of individual objects, and that part

of the pattern is shared across participants. This neural pattern is

characterized by a distribution of activation across many cortical

regions, involving locations that encode diverse object properties.

The results uncover the biological organization of information

about visually depicted objects.

Distributed representation
The fact that individual objects, and the categories they belong to,

can be accurately decoded from fMRI activity in any of several

regions indicates that there are multiple brain regions besides

classical object-selective cortex that contain information about the

objects and categories. These new findings raise the future

research challenge of determining whether these multiple regions

all contain similar information about the object (i.e., inter-region

representational redundancy), or alternatively, whether each of the

regions contains somewhat region-specific information about the

object. The distributed patterns of activation evoked by objects

which are being visualized include many of the parietal and

prefrontal regions that contained diagnostic voxels in our study

[7,27,28,29]. The distributed activation pattern may reflect the

distribution across cortical areas that are specialized for various

types of object properties [7,30,31]. For example, the diagnostic

voxels from the motor cortex that helped identify the hand tools

may have represented the motor actions involved in the use of the

tools. Similarly, parahippocampal voxels that were useful for

identifying dwellings may have represented contextual information

[32] about some aspect of dwellinghood that has earned this

Figure 7. Brain regions in the space of the first two principal
components of the compromise matrix based on the regions’
confusion errors. The first principal component separates anterior
and posterior regions, and accounts for 8% of the variance. The second
principal component separates parietal and temporal regions, and
accounts for 6% of the variance in the data. Region labels are color-
coded by lobe, and are described in Table 1. The arrows are used to
separate labels that are close to each other.
doi:10.1371/journal.pone.0001394.g007
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region the label of ‘‘parahippocampal place area’’ [22]. Similarly,

other diagnostic regions presumably represented other types of

visual and functional properties of the objects. An alternative

characterization that is equally compatible with the empirical

findings is that there are many ways in which we can think about,

perceive, visualize, and interact with objects, for which different

brain areas are differentially specialized. In this view, it is not just

the isolated, intrinsic properties of the objects that are being

represented, but also the different ways that we mentally and

physically interact with the objects.

The information content within a number of individual

anatomical regions is sufficient for exemplar and category

identification, but the content of the representation appears to

be somewhat different across regions. Comparison of the

confusions in different regions suggests that despite the similarities

in the identification accuracies provided by the various regions,

anterior and posterior regions may represent different aspects of

the objects, and that different brain regions provide the classifier

with different kinds of information, likely corresponding to the

different types of perceptual, motor, and conceptual processing

that is performed in various brain regions.

Commonality of the neural representation of object

categories and exemplars across participants
The ability to identify object categories across participants reveals

the striking commonality of the neural basis of this type of

semantic knowledge. The neural invariances, in terms of the

locations and activation amplitudes of common diagnostic voxels,

emerged despite the methodological difficulty of normalizing the

morphological differences among participants. The challenge of

comparing the thoughts of different people has been met here in a

very limited sense, although there always remains uncertainty

about whether the information content corresponding to a

diagnostic voxel’s activity was the same across participants. Still,

the new findings indicate that there is cross-participant common-

ality in the neural signature at the level of semantic property

representations (and not just visual features).

The category and exemplar classification accuracies when

training across participants were on average lower than when

training within participants, indicating that a critical diagnostic

portion of the neural representation of the categories and

exemplars is still idiosyncratic to individual participants. There is

apparently systematic activation within an individual (permitting

better identification of that individual’s cognitive state) that lends

individuality to object representations.

Even though the classification accuracy was generally higher

within as opposed to across participants, for a small number of

participants (all of whom had low within-participant identification

accuracies), identification based on training data from other

participants actually resulted in higher accuracy than when

training based on that participant’s own data. In these few cases,

the individual’s idiosyncratic activation pattern may have been too

variable over presentations to outperform the communal neural

signature. These cases provide a demonstration of the remarkable

power of the shared activation pattern to identify the thoughts of

others.

SUPPORTING INFORMATION

Table S1 Identification accuracies of object exemplars based on

the patterns of functional activity of that or other participants.

Observed accuracies, number of voxels, and the p-value based on

permutation distribution with 1,000 permutations are reported.

Found at: doi:10.1371/journal.pone.0001394.s001 (0.04 MB

DOC)

Table S2 Identification accuracies of object categories based on

the patterns of functional activity of that or other participants.

Observed accuracies, number of voxels, and the p-value based on

permutation distribution with 1,000 permutations are reported.

Found at: doi:10.1371/journal.pone.0001394.s002 (0.04 MB

DOC)

ACKNOWLEDGMENTS
We would like to thank Vladimir Cherkassky and Sandesh Aryal for

technical assistance, reviewers for helpful comments on the earlier version

of the manuscript and Stacey Becker and Rachel Krishnaswami for help in

the preparation of the manuscript.

Author Contributions

Conceived and designed the experiments: MJ SS TM. Performed the

experiments: SS. Analyzed the data: SS VM. Contributed reagents/

materials/analysis tools: SS RM VM WW. Wrote the paper: MJ SS TM.

REFERENCES
1. Hanson SJ, Matsuka T, Haxby JV (2004) Combinatorial codes in ventral

temporal lobe for object recognition: Haxby (2001) revisited: is there a ‘‘face’’

area? NeuroImage 23: 156–166.

2. Cox DD, Savoy RL (2003) Functional magnetic resonance imaging (fMRI)

‘‘brain reading’’: detecting and classifying distributed patterns of fMRI activity in

human visual cortex. NeuroImage 19: 261–270.

3. Carlson TA, Schrater P, He S (2003) Patterns of activity in the categorical

representations of objects. Journal of Cognitive Neuroscience 15: 704–717.

4. Mourao-Miranda J, Bokde AL, Born C, Hampel H, Stetter M (2005) Classifying

brain states and determining the discriminating activation patterns: support

vector machine on functional MRI data. NeuroImage 28: 980–995.

5. LaConte S, Strother S, Cherkassky V, Anderson J, Hu X (2005) Support vector

machines for temporal classification of block design fMRI data. NeuroImage 26:

317–329.

6. Polyn SM, Natu VS, Cohen JD, Norman KA (2005) Category-specific cortical

activity precedes retrieval during memory search. Science 310: 1963–1966.

7. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, et al. (2001)

Distributed and overlapping representations of faces and objects in ventral

temporal cortex. Science 293: 2425–2430.

8. O’Toole A, Jiang F, Abdi H, Haxby JV (2005) Partially distributed

representations of objects and faces in ventral temporal cortex. Journal of

Cognitive Neuroscience 17: 580–590.

9. Rosch E, Mervis CB, Gray WD, Johnson DM, Boyes-Braem P (1976) Basic

objects in natural categories. Cognitive Psychology 8: 382–439.

10. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, et al.

(2002) Automated anatomical labeling of activations in SPM using a

macroscopic anatomical parcellation of the MNI MRI single-subject brain.

NeuroImage 15: 273–289.

11. Rademacher J, Galaburda AM, Kennedy DN, Filipek PA, Caviness VS (1992)

Human cerebral cortex: localization, parcellation and morphometry with

magnetic resonance imaging. Journal of Cognitive Neuroscience 4: 352–374.

12. Rorden C, Brett M (2000) Stereotaxic display of brain lesions. Behavioural

Neurology 12: 191–200.

13. Mitchell TM, Hutchinson R, Niculescu RS, Pereira F, Wang X, et al. (2004)

Learning to decode cognitive states from brain images. Machine Learning 57:

145–175.

14. Lavit C, Escoufier Y, Sabatier R, Traissac P (1994) The ACT (STATIS

method). Computational statistics and data analysis 18: 97–119.

15. Abdi H, Valentin D (2007) STATIS. In: Salkind NJ, ed. Encyclopedia of

measurement and statistics. Thousand Oaks (CA): Sage. pp 955–962.

16. Robert P, Escoufier Y (1976) A unifying tool for linear multivariate statistical

methods: the RV-coefficient. Applied Statistics 25: 257–265.

17. Kherif F, Poline JB, Meriaux S, Benali H, Flandin G, et al. (2003) Group

analysis in functional neuroimaging: selecting subjects using similarity measures.

NeuroImage 20: 2197–2208.

18. Shinkareva SV, Ombao HC, Sutton BP, Mohanty A, Miller GA (2006)

Classification of functional brain images with a spatio-temporal dissimilarity

map. NeuroImage 33: 63–71.

Representation of Objects

PLoS ONE | www.plosone.org 8 January 2008 | Issue 1 | e1394



19. Chao LL, Martin A (2000) Representation of manipulable man-made objects in

the dorsal stream. NeuroImage 12: 478–484.

20. Phillips JA, Noppeney U, Humphreys GW, Price CJ (2002) Can segregation

within the semantic system account for category-specific deficits? Brain 125:

2067–2080.

21. Culham JC, Valyear KF (2006) Human parietal cortex in action. Current

Opinion in Neurobiology 16: 205–212.

22. Epstein R, Harris A, Stanley D, Kanwisher N (1999) The parahippocampal

place area: recognition, navigation, or encoding? Neuron 23: 115–125.

23. James TW, Humphrey GK, Gati JS, Menon RS, Goodale MA (2002)

Differential effects of viewpoint on object-driven activation in dorsal and ventral

streams. Neuron 35: 793–801.

24. Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, et al. (1999)

Differential processing of objects under various viewing conditions in the human

lateral occipital complex. Neuron 24: 187–203.

25. Vuilleumier P, Henson RN, Driver J, Dolan RJ (2002) Multiple levels of visual

object constancy revealed by event-related fMRI of repetition priming. Nature

Neuroscience 5: 491–499.

26. Hasson U, Nir Y, Levy I, Fuhrmann G, Malach R (2004) Intersubject

synchronization of cortical activity during natural vision. Science 303:
1634–1640.

27. Ishai A, Ungerleider LG, Martin A, Haxby JV (2000) The representation of

objects in the human occipital and temporal cortex. Journal of Cognitive
Neuroscience 12: 35–51.

28. Ishai A, Ungerleider LG, Martin A, Schouten JL, Haxby JV (1999) Distributed
representation of objects in human ventral visual pathway. Proceedings of the

National Academy of Sciences 96: 9379–9384.

29. Mechelli A, Price C, Friston KJ, Ishai A (2004) Where bottom-up meets top-
down: neuronal interactions during perception and imagery. Cerebral Cortex

14: 1256–1265.
30. Martin A, Ungerleider LG, Haxby JV (2000) Category specificity and the brain:

the sensory/motor model of semantic representations of objects. In:
Gazzaniga MS, ed. The new cognitive neurosciences. Cambridge: MIT Press.

pp 1023–1035.

31. Goldberg RF, Perfetti CA, Schneider W (2006) Perceptual knowledge retrieval
activates sensory brain regions. Journal of Neuroscience 26: 4917–4921.

32. Aminoff E, Gronau N, Bar M (2006) The parahippocampal cortex mediates
spatial and nonspatial associations. Cerebral Cortex 17: 1493–1503.

Representation of Objects

PLoS ONE | www.plosone.org 9 January 2008 | Issue 1 | e1394


