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In this work we explore whether the patterns of brain activity associated with thinking about concrete objects
are dependent on stimulus presentation format, whether an object is referred to by a written or pictorial form.
Multi-voxel pattern analysis methods were applied to brain imaging (fMRI) data to identify the item category
associated with brief viewings of each of 10words (naming 5 tools and 5 dwellings) and, separately, with brief
viewings of each of 10 pictures (line drawings) of the objects named by the words. These methods were able
to identify the category of the picture the participant was viewing, based on neural activation patterns
observed during word-viewing, and identify the category of the word the participant was viewing, based on
neural activation patterns observed during picture-viewing, using data from only that participant or only from
other participants. These results provide an empirical demonstration of object category identification across
stimulus formats and across participants. In addition, we were able to identify the category of the word that
the participant was viewing based on the patterns of neural activation generated duringword-viewing by that
participant or by all other participants. Similarly, we were able to identify with even higher accuracy the
category of the picture the participant was viewing, based on the patterns of neural activation demonstrated
during picture-viewing by that participant or by all other participants. The brain locations that were
important for category identification were similar across participants and were distributed throughout the
cortex where various object properties might be neurally represented. These findings indicate consistent
triggering of semantic representations using different stimulus formats and suggest the presence of stable,
distributed, and identifiable neural states that are common to pictorial and verbal input referring to object
categories.
).
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Introduction

The way that concrete objects are represented in the human brain
is an important question in cognitive neuroscience. Recently, multi-
voxel pattern analysis methods have been applied to fMRI-measured
brain activity to associate the brain activity patterns with presented
stimuli (see Haynes and Rees (2006), Norman et al. (2006), O'Toole
et al. (2007) and Pereira et al. (2009) for reviews of this approach).
This approach has the potential to be particularly useful in
determining how semantic information about objects is represented
in the cerebral cortex. Using multi-voxel pattern analysis, previous
studies succeeded in identifying the cognitive states associated with
viewing categories of visually depicted objects (Carlson et al., 2003;
Cox and Savoy, 2003; Hanson and Halchenko, 2007; Hanson et al.,
2004; Haxby et al., 2001; O'Toole et al., 2005; Polyn et al., 2005;
Shinkareva et al., 2008), objects presented in the combined word
(noun) and picture form (Mitchell et al., 2008), or objects referred to
by a written word (Just et al., 2010). In this work we explore whether
the patterns of brain activity associated with thinking about concrete
objects are dependent on stimulus presentation format, whether an
object is referred to by a written or pictorial form.

Multivariate pattern analysis has been successfully used in other
cross-modal or cross-task classification applications. For example, to
distinguish between activation patterns during mental addition and
subtraction, after training the classifier on data from separate
experiment requiring saccades to the right or left (Knops et al.,
2009), training the classifier on stimuli from sensory domain to
separate stimuli in the motor domain, thus illustrating that fMRI
signal is similar when perceiving and performing actions (Etzel et al.,
2008), or to decode different individual numbers across symbolic and
non-symbolic number formats (Eger et al., 2009).

Several studies have postulated that much of the semantic
representation of objects is common between written and pictorial
stimulus formats, with little functional differentiation (Bright et al.,
2004; Chee et al., 2000; Gates and Yoon, 2005; Vandenberghe et al.,
1996). We hypothesized that the patterns of brain activity associated
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Fig. 1. Schematic representation of the experimental paradigm for the (A) pictures and
(B) words experiments. All stimuli were presented in white against a black background.
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with thinking of an object when it is referred to by a written word and
when it is depicted by a line drawing are similar. Thus it should be
possible to use the brain activity patterns extracted during picture-
viewing to identify the semantic category of the stimulus during
word-reading, and vice versa.

Methods and procedures

Experimental paradigm

Participants viewed words and line drawings of concrete nouns
from two semantic categories (tools and dwellings). There were five
exemplars per category: drill, hammer, screwdriver, pliers, and saw;
and apartment, castle, house, hut and igloo. All stimuli were presented
in white against a black background.

Brain activation data for viewing words and for viewing pictures
were collected in two separate functional imaging acquisitions during
the same scanning session, separated by an experiment from a
different study. The order of the two acquisitions was balanced across
participants. In each acquisition for words and pictures, there were 6
iterations of presentations of the 10 stimuli, each time in a different
random order, for a total of 60 presentations. Participants silently read
the words or viewed the line drawings. They were instructed to
consistently think about the same properties of the object upon each
presentation to encourage repeated neural activation representative
of multiple attributes of the object. To ensure that each participant
had a consistent set of properties to think about, they individually
generated and wrote a set of properties related to each exemplar
(such as cold, knights, and stone for castle), presented once as a word
and once as a picture, in a session prior to the scanning session. The
intention of property generation was to foster the retrieval and
assessment of salient properties of the object; however, nothing was
done to elicit consistency across the two stimulus formats or across
participants.

Each stimulus was presented for 3 s, followed by a 7 s rest period,
during which the participants were instructed to fixate on an X
displayed in the center of the screen. There were six additional
presentations of a fixation, 21 s each, distributed across the session to
provide a baseline measure of activation. A schematic representation
of the paradigm is shown in Fig. 1.

fMRI procedure

Functional images were acquired on a Siemens Allegra 3.0T
scanner (Siemens, Erlangen, Germany) at the Brain Imaging Research
Center of Carnegie Mellon University and the University of Pittsburgh,
using a gradient echo EPI pulse sequence with TR=1000 ms,
TE=30 ms and a 60° flip angle. Seventeen 5-mm thick oblique-axial
slices were imagedwith a gap of 1 mm between slices. The acquisition
matrix was 64×64 with 3.125×3.125×5 mm voxels.

fMRI data processing and analysis

Data processing and statistical analysis were performed using
Statistical Parametric Mapping software (Wellcome Department of
Cognitive Neurology, London, UK). The data were corrected for slice
timing, motion, and linear trend and were temporally smoothed with
a high-pass filter using a 190 s cutoff. The data were prepared for
pattern classification methods by spatial normalization into MNI
space using the 12-parameter affine transformation and resampled to
3×3×6 mm3 voxels. Voxels outside the brain or absent from at least
one participant were excluded from further analysis. The percent
signal change (PSC) relative to the fixation conditionwas computed at
each voxel for each stimulus presentation. The mean of the four
images acquired within a 4 s window, offset 4 s from the stimulus
onset (to account for the delay in hemodynamic response), provided
the main input measure for the classifiers. The mean PSC data for each
word or picture presentation were further transformed to have mean
zero and variance one, to equate between participants' variation in
activation elicited by exemplars.

Pattern classification methods

Classifiers were trained to identify cognitive states associated with
viewing words or pictures from the pattern of brain activity (mean
PSC) elicited by the same or different stimuli formats. Classifiers
(described below) were functions f of the form: f: mean_PSC→Yj, j=
{1, 2}, where Yj were the two categories (tools, dwellings) and where
mean_PSC was a vector of mean PSC voxel activations, as described
above. To evaluate classification performance, trials were divided into
training and test sets. Prior to classification, relevant features (voxels)
were extracted (selected as described below) to reduce the
dimensionality of the data, using data from only the training set for
this selection. A classifier was built from the training set, using the
selected features. Classification performance was then evaluated by
applying the classifier to the left-out test set. Our previous exploration
with different data sets has indicated that several feature selection
methods and classifiers produce comparable results. Here we
employed a single feature selection method and a single classifier
for all participants, chosen for simplicity. Thus the choice of feature
selection method and a classifier was not optimized for this data set.
Other related methods and parameter values may produce compara-
ble outcomes.

Feature selection

Feature selection first identified the voxels whose responses were
the most stable over presentations and then selected from among the
stable voxels those that best discriminated among items within the
training set. In the first step, the 400 most stable voxels were
identified, where voxel stability was computed as the average
pairwise correlation between 10-object vectors across the five
training presentations. In the second step, these 400 voxels were
assessed for how discriminating they were, by training a logistic
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Fig. 2. Classification accuracies across stimulus formats when training on words to
identify the category of viewed pictures. Reliable (pb0.05) accuracies for identification
of category of viewed pictures (filled bars) were reached for 11 participants when
training on word data, and reliable (pb0.05) accuracies for identification of category of
viewed pictures when training on the union of word data from the other participants
(unfilled bars) were reached for 8 out of 12 participants. The dashed line indicates the
α=0.05 level of significance.
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regression classifier to discriminate among categories based only on
the training set (Shinkareva et al., 2008). From among the 400 voxels
selected for stability, a subset of 120 voxels (henceforth, diagnostic
voxels) was selected based on having the highest (absolute value)
regression weights in the logistic regression based on the training
data. Previous studies with different data sets indicated reliable
classification accuracies for feature sets of 10–400 voxels, varying in
size depending on participant. In this work we used the same number
(a typical number of features generating high classification accuracies
based on other data sets) of voxels for all participants.

Classification

The Gaussian Naïve Bayes (GNB) pooled variance classifier was used
(Mitchell, 1997). It is a generative classifier that models the joint
distributionof a classY (either toolsordwellings) andattributes×(voxels),
and assumes the attributes X1,…,Xn are conditionally independent given
Y. The classification rule is:

Y← arg max
yj

P Y = yj
� �

∏
n

i
P Xi jY = yj
� �

; j = 1;2:

Classification results were evaluated using k-fold cross-validation,
where one presentation of all exemplars per class was left out for each
fold. Hence the identification accuracy was always based only on test
data that were disjoint from the training set. For a two-class classi-
fication problem with equally frequent classes the chance level is 0.5.
The observed accuracy was then compared to the binomial distribu-
tion; if the observed accuracy had a p-value of at most 0.05, then the
result was considered significant (Pereira et al., 2009).

Cross-participant analysis

Data from all but one participant were used to train a classifier to
identify the data from the left-out participant. This process was
repeated reiteratively, leaving out each of the participants. Feature
selection was conducted by combining the data of all participants
except the one left out. A discriminating set of 120 diagnostic voxels
was selected on the basis of logistic regression weights, using data
only from the training set.

Analyses of a single brain region at a time

To determine the relative information value of various brain
regions in identifying object categories, single brain regions that
consistently contained voxels used in identification of object
categories across participants, without making the assumption that
their voxel patterns are spatially matched in a common space, were
identified. The full list of anatomical regions was defined using the
Anatomical Automatic Labeling (AAL) system (Tzourio-Mazoyer et al.,
2002). In addition to existing AAL regions, two parietal regions, left
and right IPS, were defined, and three temporal regions, the superior,
middle, and inferior temporal gyri, were segmented into anterior,
middle, and posterior portions based on planes F and D from the
Rademacher scheme, resulting in a total of 71 regions (Rademacher
et al., 1992). Since the number of voxels within each anatomical
region is considerably smaller compared to the whole brain, within
each participant a cross-validated accuracy based on each individual
region for that participant was computed using a logistic regression
classifier with L2 regularization using all the voxels from that region
(although all of the voxels in the region were included in the analysis,
the logistic regression assigns greater weights to those voxels that
contribute most to the classification). The mean classification ac-
curacy was computed for each region across participants and com-
pared to a binomial distribution. The obtained p-values (computed
using a normal approximation) were then compared to the level of
significance α=0.05, using the Bonferroni correction to account for
multiple comparisons, which is appropriate for a map at an anat-
omical region level. This analysis was done for category identification
across and within stimulus formats, word and picture.

Participants

Twelve right-handed adults (eight female) from the Carnegie
Mellon University community participated and gavewritten informed
consent approved by the University of Pittsburgh and CarnegieMellon
University Institutional Review Boards. Six additional participants
were excluded from the analysis due to head motion greater than
2.5 mm.

Results

Category identification across stimulus formats within participants

When a classifier was trained for each participant on word data to
determine if it was possible to identify object categories based on
brain activation data evoked by picture stimuli, the highest classifi-
cation accuracy obtained for a single participant was 0.97 (that is,
correct category identification for 58 out of 60 picture presentations).
Reliable (pb0.05) classification accuracies were reached for 11 out of
12 participants (filled bars in Fig. 2). The mean classification accuracy
for categories of pictures when trained on data generated by words
was 0.75 (SD=0.14).

When a classifier was trained for each participant on picture data
to identify the object categories based on brain activation data evoked
by word stimuli, the highest classification accuracy obtained for a
single participant was 0.97 (that is, correct category identification for
58 out of 60 word presentations). Reliable (pb0.05) classification
accuracies were reached for six out of 12 participants (filled bars in
Fig. 3). The mean classification accuracy for word categories when
trained on pictures was 0.66 (SD=0.17).

In summary, classifiers trained on data from one stimulus format
were able to successfully identify object categories in the imaging data
from the other stimulus format. The identification was reliable for a
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Fig. 3. Classification accuracies across stimulus formats when training on pictures to
identify the category of viewed words. Reliable (pb0.05) accuracies for identification of
category of viewedwords (filled bars) were reached for 6 participants when training on
pictures data, and reliable (pb0.05) accuracies for identification of category of viewed
words when training on the union of picture data from the other participants (unfilled
bars) were reached for 9 out of 12 participants. The dashed line indicates the α=0.05
level of significance.
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greater number of participants when word-generated activation was
used to classify picture-generated activation. These findings were ob-
tained when the classification was conducted within each participant.

Category identification across stimulus formats across participants

Data from one stimulus format from all but one participant were
used to identify the object category of the other stimulus format
presented to the left-out participant. To determine if it was possible to
identify the object category of viewed pictures in the left-out
participant using brain activation data from other participants, a
classifier was trained on the combined word data from all but one
participant. This procedure was repeated for each of the participants.
The highest classification accuracy obtained for a single participant
using this approach was 0.92 (unfilled bars in Fig. 2). Reliable
(pb0.05) category classification accuracies were achieved in eight
participants. The mean classification accuracy was 0.67 (SD=0.13).
Thus it is possible to identify the category of a pictured object for a
participant based on the word-generated activation of other people,
while maintaining accuracy comparable to classification based on the
participant's own data.

The attempt to classify categories also succeeded in the opposite
stimulus format comparison, when classifiers were trained on picture
activation and then used to identify word categories. A classifier was
trained on the union of picture data from all but one participant to
determine if it was possible to identify the object category of viewed
words in the left-out participant. This procedure was repeated for
each of the participants. The highest accuracy obtained for a single
participant was 0.80 (unfilled bars in Fig. 3). Reliable (pb0.05)
category classification accuracies were achieved in nine participants.
The mean classification accuracy was 0.65 (SD=0.10). Thus it was
possible to identify the category of an object whose name a
participant was reading based solely on the neural signature derived
from a set of other participants' activations generated during picture
viewing.

To ensure that there was no effect of acquisition order (viewing
words or pictures first), a supplementary analysis made cross-
participants cross-stimulus format identifications based on only the
first of the two conditions (viewingwords or pictures first) performed
by eachparticipant. The absenceof a reliable difference (p-value=0.6)
between the two mean identification accuracies, computed across
participants for words and pictures, indicated that the order of
presentation of the two stimulus formats did not affect the main
conclusions.

These findings indicate that a high degree of commonality exists in
the neural activation patterns elicited by the stimulus categories, both
across stimulus formats and across participants. This similarity in
patterns of brain activation enabled the cognitive state identification
that was successfully achieved by the classifiers. A secondary finding
is that the classification accuracy for identifying the object category of
a picture after training on word data was generally higher than the
accuracy for identifying the object category of a word after training on
picture data.

Category identification across stimulus formats based on single brain
regions

To determine whether cognitive states elicited by input from one
stimulus format can be identified based on the activation in a single
brain region stimulated by input from the other stimulus format,
classifiers were trained using voxels from only one anatomical region
(such as left inferior parietal lobule (IPL)) at a time. The accuracies
obtained in this ancillary analysis were surprisingly high. For example,
in the case of one participant whose classification accuracy was 0.97
for category identification of pictures based on word-generated
activation throughout the cortex, the single-region accuracy was
0.83 for the left IPL and 0.78 for the left precentral gyrus. For the same
participant, the classification accuracy was 0.92 for category identi-
fication of words based on picture-generated activation throughout
the cortex, while the single-region accuracy was 0.90 for the left IPL
and 0.77 for the left precentral gyrus. The regions that generated
reliable accuracies across participants in this single-region category
identification across stimulus formats were the fusiform gyrus and
precuneus, paracentral lobule and superior parietal lobule (SPL)
bilaterally. In the left hemisphere, the superior extrastriate (SES),
inferior extrastriate cortex (IES), intraparietal sulcus (IPS), IPL,
supplementary motor area (SMA), posterior cingulate, postcentral
and precentral gyri, and posterior superior and inferior temporal gyri
produced reliable accuracies for cross-participant identification in
both classification directions. In addition, the right IPL generated
reliable accuracies across participants when training on words to
identify picture categories. The ability to identify the object category
based on activation generated from the other stimulus format in
selected anatomical regions indicates the presence of discriminating
semantic information in these regions.

Category identification within word stimulus format only

Although the main focus of this paper is the identification of brain
activation patterns across stimulus formats, it is also interesting to
examine identification of brain activation patterns for each of the
stimulus formats. Of particular interest is thewithin-word data, which
have seldom been examined in this way; a majority of previous
attempts at classification of semantic categories have used data
generated by picture stimuli. For each participant, a classifier was
trained on the activation generated by a subset of the word data, and
then tested on an independent subset on the ability to identify which
category of word the participant was viewing. The highest classifica-
tion accuracy in a single participant was 0.93 (correct category
identification on 56 out of 60 word presentations). Reliable (pb0.05)
classification accuracies for identifying the category of the word that a
participant was viewing were reached for 11 participants (filled bars
in Fig. 4). The mean classification accuracy for word-category
identification across the 12 participants was 0.74 (SD=0.13).
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Fig. 4. Classification accuracies for identifying the category of viewed words. Reliable
(pb0.05) accuracies for identification of category of viewed words (filled bars) were
reached for 11 participants, and reliable (pb0.05) accuracies for identification of
categories of viewed words when training on the union of data from the other
participants (unfilled bars) were reached for 9 out of 12 participants. The dashed line
indicates the α=0.05 level of significance.

p4 p11 p6 p8 p7 p5 p10 p2 p1 p12 p3 p9 group mean

Participants rank−ordered by across−participants accuracy

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

Picture Classification (trained on pictures)

within participants
across participants

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5. Classification accuracies for identifying the category of viewed pictures. Reliable
(pb0.05) accuracies for identification of category of viewed pictures (filled bars) were
reached for all participants, and reliable (pb0.05) accuracies for identification of
category of viewed picture when training on the union of data from the other
participants (unfilled bars) were reached for 11 out of 12 participants. The dashed line
indicates the α=0.05 level of significance.
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The classification of word data was also performed across
participants. A classifier was trained on data from 11 of the 12
participants to determine if it was possible to identify word categories
in the left-out 12th participant; this procedure was repeated for all
participants. The highest classification accuracy obtained was 0.75.
Word categories being viewed were reliably (pb0.05) identified for 9
out of 12 participants (unfilled bars in Fig. 4). The mean classification
accuracy was 0.64 (SD=0.09). Thus the category of a noun that a
person reads and thinks about can be identified solely on the basis of
activation patterns obtained from other individuals.

Category identification within picture stimulus format only

For each participant, a classifier was trained to decode which
picture category the participant was viewing. Accuracies of at least
0.95 (correct category identification in at least 57 out of 60 picture
presentations) were obtained in four of the participants (filled bars in
Fig. 5). Reliable (pb0.05) classification accuracies were reached for all
12 participants. The mean classification accuracy for picture-category
identification across the 12 participants was 0.83 (SD=0.13).

For cross-participant identification of the category of the pre-
sented picture, the highest accuracy obtained for one of the
participants was 0.95 (correct identification of the category in 57
out of 60 object presentations) (unfilled bars in Fig. 5). The classifier
achieved reliable (pb0.05) accuracy in 11 out of 12 participants. The
mean accuracy across participants was 0.75 (SD=0.10). Within
stimulus formats, picture activations were classified more accurately
than word activations, a result reminiscent of the finding that picture
categories are easier to identify after training on words than vice
versa.

Locations of voxels used in category identification within
stimulus formats

The locations of diagnostic voxels for within word and picture
category identification were distributed across the cortex. The
similarity of the locations of these diagnostic voxels across partici-
pants and across the two stimulus formats is illustrated in Fig. 6,
which indicates the locations of the voxels used by within-stimulus
format classifiers in three of the participants (the participants with
the highest classification accuracies when using a classifier trained on
word data to identify categories of pictures).

Single regions that contained information consistently identifying
the object category for words and for pictures, as well as across the
two stimulus formats in either direction, were located primarily in the
left hemisphere (first column in Table 1). In addition, some regions
only supported category identification for either word or picture data
(Table 1). The anatomically defined regions of interest (based on the
AAL scheme) differ greatly in volume. The number of voxels within
each anatomically defined region that contributed to the classification
differed much less, with there generally being more such voxels in
more posterior (visual) regions and fewer such voxels in more
anterior association areas.
Discussion and conclusions

Successful identification of an object category presented in one
stimulus format based on neural activation patterns elicited by a
different stimulus format implies consistent triggering of semantic
representations using different stimulus formats. Thus the neural
activity captured by the classifiers reflects semantic property repre-
sentation, and not just perceptual features associated with stimulus
formats. It is the first demonstration of the ability to identify a word
category on the basis of activation generated by picture stimuli, and
vice versa.

The ability to use neural activation patterns to identify object
categories across the stimulus formats suggests a commonality of the
neural basis of these two types of semantic knowledge. In addition to the
commonalityof neural activity acrosswords andpictures, therewasalso
evidence of format-specific neural activation. Some of themore anterior
regions (e.g., left pars opercularis and left pars triangularis) contained
adequate information to identify the category of either words or
pictures but did not support identification across stimulus formats.
These findings indicate that some small but information-laden part of



Fig. 6. Similarity across participants and across the two stimulus formats in the locations of diagnostic voxels for word (upper panel) and picture (lower panel) category
identification. Diagnostic voxels (union across folds) used by the classifier are shown on the three-dimensional rendering of the T1 MNI single-subject brain (red for the tools
category and blue for the dwellings category). Ellipses highlight the commonality of voxel locations for object identification in LIPL across participants and across the two stimulus
formats.
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the neural representation of objects is specific to the format of
stimulus presentation. Format-specific representation is consistent
with patterns of performance in patients with disorders of semantic
memory, such as an asymmetry in the retrieval of words and
pictures in Pick's disease (Hodges and Patterson, 1997), despite of
considerable commonality of the neural representation. Brain
pathology can selectively damage some biological infrastructure
of the retrieval process yet apparently leave the neural represen-
tation intact. Thus neural representations are likely to be separable
from at least some of the neural structures that are used in
retrieving a word that name an object. Taken together, these results
are consistent with the proposal of a common semantic represen-
tation for the two stimulus formats accompanied by some degree of
format-specific differentiation (Bright et al., 2004; Chee et al., 2000;
Gallagher et al., 2000; Gates and Yoon, 2005; Vandenberghe et al.,
1996).

We propose that words and pictures can give rise to a common
neural representation. However, we note that the commonality of
neural representations across stimulus formats may also be influ-
enced by the commonality of the task instructions in the two
Table 1
Anatomical regions, selected based on data from 12 participants, that contain information s
hemisphere.

Areas/Function Words, pictures and Cross-format (bidirectional)

Language L posterior superior temporal, posterior middle temporal g

Motor/somatosensory L postcentral gyrus
L precentral gyrus
L supplementary motor area

Visual-spatial L inferior parietal, supramarginal, angular gyri
L intraparietal sulcus
L/R superior parietal gyrus, precuneus, paracentral lobule

Executive

Visual L inferior occipital, lingual gyri
L posterior inferior temporal gyrus
L cuneus, superior occipital, middle occipital gyri
L/R fusiform gyrus

Other L posterior cingulum
conditions. Regardless of the instructions, some of the cross-modal
similarity in neural activity may have followed from automatic
processing of the familiar stimuli, uninfluenced by instructions;
determining how much of the commonality is due to automatic
processing versus strategic recall of object properties is an issue that
can be addressed in future research. Furthermore, despite the object
properties for the two stimulus formats being generated by the par-
ticipants in the same session prior to the scanning, these properties
differed to some degree between word and picture stimulus formats
for most of the participants (mean Dice coefficient across participants
was 0.68, SD=0.23). Even if the deliberate recall is helping the
classification, our results still show the semantic encoding is not
influenced much by the stimulus form and that our methods detect
the locations and patterns of the similar encodings. Future studies
may shed further light on this issue by presenting the stimuli in a way
that does not permit strategic retrieval schemes (such as presenting
items for very short durations) or by measuring EEG or MEG re-
sponses that might permit a temporal separation between automat-
ically and strategically activated brain regions. Although it is obvious
that there should be a commonality between what neural events are
ufficient to decode semantic category. L indicates left hemisphere and R indicates right

Word-specific Picture-specific

yri L pars opercularis L pars triangularis
L mid-superior temporal gyrus

R intraparietal sulcus

L middle frontal gyrus
R superior frontal gyrus

L calcarine fissure
L/R cerebellum
R inferior occipital, lingual gyri
R posterior inferior temporal gyrus
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evoked by a word and a corresponding picture, particularly when the
task instructions are the same in the two cases, it is quite another
thing to demonstrate the ability to classify thoughts across modalities
using the common neural representation.

Semantic organization

The set of brain areas that contain category-specific information
about tools and dwellings can be classified into areas that support
category identification across stimulus formats and areas that support
either word or picture category identification.1

Independent of stimulus format, object categories can be accu-
rately decoded from several regions, located primarily in the left
hemisphere and distributed throughout the cortex. The ability to
identify an object's category based on data from another stimulus
format suggests the presence of semantic, non-perceptual content in
the object's representation in those regions. The regions that contain
sufficient information for category identification across stimulus
formats include areas that have been associated with encoding the
representation of manipulable objects and objects denoting shelter
(Just et al., 2010). These regions include areas in the ventral-visual
pathway that have previously been shown to be activated by both
word and picture stimuli; these areas are hypothesized to relate to
abstract form representations of objects (Bright et al., 2004; Chao
et al., 1999; Devlin et al., 2005; Perani et al., 1999; Pietrini et al., 2004).
In addition, areas associated with higher-level visuo-spatial proces-
sing, language, motor and somatosensory functions contained suf-
ficient information for category identification across stimulus formats.
For example, the LIPL, which has been implicated in manipulation
knowledge, was previously shown to activate in response to both
word and picture stimuli (Boronat et al., 2005).

The common neural representation of words and pictures
indicates that they share a feature-based, distributed, conceptual
representation marked by several interesting properties. First, the
inclusion of motor and sensory properties in the representation of an
object (Hoenig et al., 2008; Pulvermuller, 2005; Pulvermuller et al.,
2009) provides evidence of “embodied cognition,” a theoretical
position holding that conceptual representations contain perceptual
and motor components corresponding to human interactions with
real entities in the physical environment (e.g., Aziz-Zadeh and
Damasio (2008); Barsalou (1999); Glenberg (1997)). Second, the
inclusion of parietal and prefrontal regions in the representation of an
object suggests that a visual imagery network may constitute part of
the representation (Mechelli et al., 2004). Alternatively, these areas
may be supporting a more abstract representation of object form
(Pietrini et al., 2004). It is quite striking that single regions contain, on
their own, enough information to decode the presented words and
objects. It must be the case that sufficient information for category
identification is represented in several different regions, lending a
somewhat different interpreting to the notion of a distributed repre-
sentation. We make no claim that the information in the different
regions is equivalent. Further studies may help illuminate the repre-
sentational content in regions that support category identification
across stimulus formats, such as studies using item-repetition priming
(Grill-Spector et al., 1999; James et al., 2002; Vuilleumier et al., 2002)
or Dynamically Adaptive Imaging (Cusack et al., 2010).

Higher category identification accuracies for pictures than for words

Accuracy identifying the category of a picture a participant was
viewing was higher than for identifying the category of a word that a
participant was reading, both within and across participants. Higher
1 Anatomical regions that support both word and picture category identification, but
not identification across formats, probably due to the coarseness of AAL regions or lack
of statistical power, are not discussed.
identification accuracies for picture data may reflect the ability of
pictorial stimuli to generate brain activation that is more stable over
six presentations than the brain activation generated by word stimuli.
The specific visual properties of a picturemaymore directly or reliably
trigger the activation of the same properties of the neural represen-
tation of an object than a written word does. From a pattern clas-
sification perspective, classifiers are more accurate when tested on
cleaner, more consistent data; in this case, identification of the
category of an object based on the activation generated by its pictorial
representation was more accurate than identification based on the
less reliable activation generated by the written representation of the
same object.

Within-participant vs. cross-participant category identification

The ability to identify object categories across participants, both
within and across the two stimulus formats, reveals a common neural
basis for representation of this type of semantic knowledge across
people. Despite the individual differences in functional organization
and the methodological difficulty of normalizing the morphological
differences found among human brains, neural similarities arose in
terms of the locations and activation amplitudes of voxels utilized by
the classifier to identify the object category of a stimulus. Classifica-
tion of mental states across individuals has been previously shown for
visually depicted objects (Shinkareva et al., 2008), concrete nouns
referring to physical objects (Just et al., 2010), lie detection
(Davatzikos et al., 2005), attentional tasks (Mourao-Miranda et al.,
2005), cognitive tasks (Poldrack et al., 2009), and voxel-by-voxel
correspondence across individuals has been demonstrated during
movie-watching (Hasson et al., 2004). The current results demon-
strate the ability to identify the category of an object viewed as a
picture or as a word based on neural activation data from other
participants in the other stimulus format.

The category identification accuracies when training classifiers on
data from across participants were, on average, lower than when
training within participants, indicating that some small portion of the
neural representation of the categories is idiosyncratic to individual
participants. There is apparently systematic variation within an
individual's neural activation (permitting better identification of
that individual's cognitive state) that leaves room for individuality
in object representation.

For a few participants with low within-participant identification
accuracies, the identification accuracy was actually higher in the
cross-participant identification (when the classifier was trained on
data from all the other participants). For these individuals, signal-
averaging over other participants provided a greater benefit to
identification than the individual's own idiosyncratic activation
pattern. It is intriguing that the neural activity underlying some
individuals’ thoughts of an object can bemore similar to a group norm
than to their own previous neural activity. This finding speaks both to
the individuality of brain activation patterns as well as to the
commonality.

The presented results provide an empirical demonstration of
object category identification across stimulus formats and across
participants. The experimental settings were restricted to 10 objects
from 2 categories. Previously, we have shown cross-participant
identification of visually depicted exemplars from the same category
of objects (Shinkareva et al., 2008), and reliable object identification
with 60 objects presented in a word form (Just et al., 2010) or
combinedword and picture form (Mitchell et al., 2008). Therefore, we
expect the across stimulus format cross participant classification
results to generalize to larger sets of exemplars.

The current study used words in a written form, however existing
work suggests that cross format identification would work with
auditorily presented stimuli as well. Despite differences in
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representational format semantic information from words presented
in auditory form and pictures has been shown to similarly integrate
into a sentence context (Willems et al., 2008). Moreover, successful
decoding has been shown for distinct activation patterns elicited by
different speech sounds (Formisano et al., 2008) and syllables
(Raizada et al., 2010). Thus the multivoxel pattern classification is
revealing the many ways that physically different stimuli can evoke
common neural substrates that correspond to the shared underlying
conceptual basis.
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