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Abstract: The question of whether the neural encodings of objects are similar across different people is
one of the key questions in cognitive neuroscience. This article examines the commonalities in the in-
ternal representation of objects, as measured with fMRI, across individuals in two complementary
ways. First, we examine the commonalities in the internal representation of objects across people at the
level of interobject distances, derived from whole brain fMRI data, and second, at the level of spatially
localized anatomical brain regions that contain sufficient information for identification of object catego-
ries, without making the assumption that their voxel patterns are spatially matched in a common
space. We examine the commonalities in internal representation of objects on 3T fMRI data collected
while participants viewed line drawings depicting various tools and dwellings. This exploratory study
revealed the extent to which the representation of individual concepts, and their mutual similarity, is
shared across participants. Hum Brain Mapp 33:1375–1383, 2012. VC 2011 Wiley Periodicals, Inc.
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INTRODUCTION

The way that concrete objects are represented in the
human brain is an important question in cognitive neuro-
science. Recently, multivoxel pattern analysis has been
applied to fMRI-measured brain activity to associate the
brain activity patterns with presented stimuli (see [Haynes
and Rees, 2006; Norman et al., 2006; O’Toole et al., 2007;
Pereira et al., 2009] for reviews of this approach). This
approach has the potential to be particularly useful in

determining how semantic information about objects is
represented in the cerebral cortex. Using multivoxel pat-
tern analysis, previous studies succeeded in identifying
the cognitive states associated with viewing categories of
objects [Carlson et al., 2003; Cox and Savoy, 2003; Hanson
and Halchenko, 2007; Hanson et al., 2004; Haxby et al.,
2001; O’Toole et al., 2005; Polyn et al., 2005]. Moreover, the
category of an object that a participant was viewing [Shin-
kareva et al., 2008, 2011] or a concrete noun that a partici-
pant was reading [Just et al., 2010; Shinkareva et al., 2011]
can be identified based only on other participants’ charac-
teristic neural activation patterns, establishing the com-
monality in how different people’s brains represent the
same object. The similarity of object representation across
individuals is of particular interest.

Most studies of object representation that use multivoxel
pattern analysis focus on the accuracy with which the
stimulus object can be predicted from observed fMRI
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activation. The distributed nature of object representation
makes it challenging to report voxel locations from pat-
tern-classification results, and the locations can be unstable
depending on the numerical techniques used to fit a classi-
fier [Carroll et al., 2009]. The questions of where the dis-
criminating information is located in the brain and how
internal representations of objects vary across people have
not been addressed in a systematic fashion.

In this work we explore the degree of commonality in
object representation across people. Describing the com-
monalities in the way objects are represented by different
people is complicated by potentially nonintersecting voxel-
level activations [Kriegeskorte and Bandettini, 2007], due
to individual differences in functional organization as well
as the methodological difficulty of normalizing the mor-
phological differences among different people. In this
work we examine the similarities in object representation
across people without making the assumption that their
voxel patterns are spatially matched in a common space.
We consider two complementary approaches that examine
the commonalities in the neural representation of objects
across people: at the level of similarities between internal
representations of objects, in terms of their whole brain
neural signature, and at the level of spatially localized ana-
tomical brain regions that contain sufficient information
for identification of object categories.

Similarity between internal representations of a pair of
objects for an individual can be derived from fMRI data,
making it possible to examine the similarity structure for a
set of objects in a lower-dimensional space using scaling
techniques, for example multidimensional scaling [Edel-
man et al., 1998; Kriegeskorte et al., 2008; Tzagarakis et al.,
2009]. In this work we are interested in examining similar-
ity structure for internal representation of objects across
people, thus focusing on multiway data (i.e., objects-by-
voxels-by-people). Multiway data analysis requires special
considerations; standard two-way analysis methods often
fail to find underlying structure in multiway arrays [Acar
and Yener, 2009]. Several solutions have been proposed to
examine similarity structure for multiway data, such as
INDSCAL procedure [Carroll and Chang, 1970], or PAR-
AFAC procedure [Harshman, 1970]. In this work we
employ a generalization of principal component analysis for
multiple matrices, STATIS, which stands for Structuration
des Tableaux A Trois Indices de la Statistique [Lavit et al.,
1994], to compare similarities between objects—in terms of
their whole brain neural signatures—across participants.
STATIS is an exploratory data analysis method for compari-
son of multiple matrices, and it offers several advantages.
First, unlike many of the multiway data analysis techniques
it is a noniterative procedure. Second, STATIS is based on
the cross-product matrix, thus allowing the number of vox-
els that are used in the analysis to vary between partici-
pants. The STATIS procedure has been shown to be robust
and computationally efficient [Stanimirova et al., 2004], and
has been previously applied in neuroimaging literature
[Abdi et al., 2009; O’Toole et al., 2007; Shinkareva et al.,

2008]. For nonneuroimaging in-depth treatment of the STA-
TIS procedure the reader is referred to Abdi and Valentin
[2007]. The commonality in the representations revealed by
STATIS analysis is a commonality in the distances between
internal representations of objects, derived from whole-
brain fMRI data, and does not imply that objects are
encoded in the same spatial locations across different peo-
ple. Therefore, additional analysis localizing the similarities
in object representation across participants is needed.

High classification accuracies for the two categories [Shin-
kareva et al., 2008] have been previously shown for the
whole brain (single large scale ROI). In this work we are
introducing the analysis of interobject distances based on
the whole brain (single large scale ROI). The analysis of
interobject distances can be done locally, for each of the
ROIs, however, we chose not to do that analysis due to the
limited stimuli set. Thus we first explored a commonality in
the internal representation of objects across participants at
the whole brain level, and showed that part of the variabili-
ty in the data was explained by the category structure of the
objects. Second, we identify single anatomical brain regions
that on average contain sufficient information to identify
object categories across participants in order to spatially
localize these similarities. The level of anatomical regions
(as compared with a search-light approach [Kriegeskorte
et al., 2006]) is appropriate for the comparison of the neural
representation of objects across participants because, due to
variations in anatomy, functional areas may not overlap
exactly across participants. By focusing on distinct anatomi-
cal regions we trade the ability to make fine spatial distinc-
tions for a straightforward, meaningful interpretation.

METHODS

Similarities in Interobject Distances

Our aim is to examine consistencies in object representa-
tions in terms of interobject distances, across individuals.
Let Xg, g ¼ 1, : : : ,G be an I � Vg preprocessed fMRI data
matrix, where I is the number of objects and Vg is the num-
ber of voxels available for the gth participant. Let Sg ¼ Xg XT

g

be a cross-product matrix for the gth participant, normalized
by the first eigenvalue [Abdi et al., 2009], that represents the
similarity between objects. The interobject similarity struc-
ture for each participant can be examined in a lower-dimen-
sional space with principal component analysis. In this
work, however, instead of focusing on one participant, we
are interested in principles of neural organization which are
consistent across individuals. Therefore, we examine a cross-
product matrix that is combined across individuals to
account for biologically plausible interparticipant differences.
We combine participant cross-product matrices into a com-
promise cross-product matrix, which is a weighted average
of individual cross-product matrices. The weights are chosen
such that the compromise is as representative of all the par-
ticipant cross-product matrices as possible [Abdi et al.,
2009]. Thus the compromise matrix expresses the agreement
among the interobject distances across participants, and is
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constructed such that participants with configurations of
objects similar to those of other participants are assigned
larger weights, and participants with configurations of
objects most different from those of others are assigned
lower weights. As a consequence, unusual or atypical obser-
vations have less influence on the result. Construction of
the compromise matrix is illustrated in Figure 1. The
compromise matrix is further analyzed by the eigen-decom-
position. Together these steps constitute the STATIS
procedure.

Formally, the compromise matrix Sþ is defined as Sþ ¼
RG
1 ag Sg, where ag is the weight for the gth participant,

subject to the constraints RG
1 ag = 1, ag � 0, g = 1,. . ., G.

The weights are derived from an G 3 G between-partici-
pants cosine matrix C, where the g,g0 entry corresponds to
the value of the RV-coefficient [Escoufier, 1973; Robert and
Escoufier, 1976], which is computed as:

Cðg;g0Þ ¼ RVðSgSg0 Þ ¼
trðSTgSg0 Þ

ðtrðSTgSgÞtrðSTg0Sg0 ÞÞ0:5

The RV-coefficient has been previously used in the neu-
roimaging literature [Abdi et al., 2009; Glascher et al.,
2009; Kherif et al., 2003; O’Toole et al., 2007; Shinkareva
et al., 2006, 2008] and is described in detail in Abdi [2007]
and Ramsay et al. [1984]. It measures the overall similarity
of two matrices and is analogous to a squared coefficient
of correlation. RV-coefficient values vary from 0 to 1, and
larger values indicate higher similarity between the two
matrices. Thus a cosine matrix C is positive semidefinite
with positive elements, and the first principal component
of C has only positive elements (Perron-Frobenius result,
e.g., Rencher [2002; p 34 and 402]. Therefore, the eigen-
decomposition of C corresponds to a noncentered princi-
pal component analysis of C [Abdi et al., 2009]. The
weights a are given by the elements of the first eigenvector
of C, rescaled to sum up to one. The compromise matrix

Sþ is analyzed by eigen-decomposition: Sþ ¼ QKQT,
where Q is the matrix of eigenvectors, such that QTQ ¼ I
and K is the diagonal matrix of eigenvalues of Sþ. The
quality of the compromise can be accessed from the first
eigenvalue of C. The objects are then represented as points
with coordinates QK1/2 in the compromise space that is
common to all participants (this is equivalent to PCA on
the compromise matrix). Furthermore, cross-product mat-
rices for individual participants can be projected into the
compromise space: SgQK�1/2, allowing for a direct visual
comparison.

Localizing Category Identification Accuracies

Across Participants

Next, we identify brain regions that on average support
within-participant object-category identification across par-
ticipants. For each participant and for each region, we
learn a classification function of the form: f: fMRI image !
Y, where fMRI image denotes preprocessed fMRI data for
one example (e.g., castle), and Y is a set of semantic catego-
ries to be discriminated (e.g., tools and dwellings). Then, we
test for significance of mean accuracies across participants,
accounting for multiple comparisons. Thus each of the an-
atomical regions, selected by this process, on average con-
tains sufficient information for category identification,
although within-region organization may vary across par-
ticipants. These steps are described in more detail below.

To obtain an unbiased estimate of classification accuracy
the data is divided into training and test sets. K-fold cross
validation is used, in which a set of examples per class is
left out for each fold (in our illustration, a classifier was
trained on five presentations of each object—50 exemplars,
and tested on the sixth one—10 exemplars). A classifier is
built from the training set, and classification performance
is evaluated on only the left-out test set. Classification ac-
curacy can then be estimated as the average accuracy
across folds:

Accuracy ¼ 1

k
Rk
i¼1ð1� EiÞ

where k is the number of folds and Ei is the error rate for
the ith fold.

In this analysis we consider anatomical regions defined
by the Anatomical Automatic Labeling (AAL) system
[Tzourio-Mazoyer et al., 2002]. In addition to existing AAL
regions, left and right intraparietal sulcus regions were
defined and superior, middle, and inferior temporal gyrus
regions were separated into anterior, middle, and posterior
sections based on planes F and D from the Rademacher
scheme, resulting in a total of 71 regions [Rademacher
et al., 1992]. For each anatomical region, a classifier is
trained on all voxels in that brain region to discriminate
between the two categories (tools and dwellings in our
example) using a training data set. Within each participant
a cross-validated accuracy based on each individual region

Figure 1.

Schematic illustration of the object-by-object compromise ma-

trix construction from object-by-voxels matrices for each of the

participants.
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for that participant is computed using a logistic regression
classifier with L2 regularization [Bishop, 2006] using all
the voxels from that region. Although all of the voxels in a
region are included in the analysis, the logistic regression
assigns greater weights to those voxels that contribute
most to the classification.

To access if an anatomical region contains sufficient in-
formation to decode the object category on average across
participants, the classification accuracy for each anatomical
region is compared with a binomial distribution B(n, p),
where n is the number of exemplars (60 in our illustration)
and p is the probability of successful category identifica-
tion under the hypothesis that exemplars are randomly
assigned into the two categories (0.5 in our illustration)
[Pereira et al., 2009]. P-values (computed using a normal
approximation) are obtained for the mean classification ac-
curacy, computed across participants for each region. The
P-values are then compared with the 0.001 level of signifi-
cance using the Bonferroni correction to account for multi-
ple comparisons, which is appropriate for a map at an
anatomical region level.

fMRI Data: Representation of

Tools and Dwellings

We examine the commonality in neural representation
of objects across participants on an fMRI data set reported
in Shinkareva et al. [2008]. Twelve participants viewed
line drawings of 10 objects from tools and dwellings catego-
ries. Ten line drawings were presented six times, each
time in a different random permutation order. Participants
were asked to think of the same object properties each
time they saw a given object, to encourage activation of
multiple attributes of the depicted object, besides those
used for visual recognition. Each stimulus was presented
for 3 s, followed by a 7 s rest period, during which the
participants were instructed to fixate on an X displayed in
the center of the screen.

Functional images were acquired on a Siemens Allegra
3.0T scanner (Siemens, Erlangen, Germany) at the Brain
Imaging Research Center of Carnegie Mellon University and
the University of Pittsburgh using a gradient echo EPI pulse
sequence with TR ¼ 1,000 ms, TE ¼ 30 ms and a 60� flip
angle. Seventeen 5-mm thick oblique-axial slices were
imaged with a gap of 1 mm between slices. The acquisition
matrix was 64 � 64 with 3.125 � 3.125 � 5 mm3 voxels. Data
preprocessing, typical for fMRI data, was performed with
Statistical Parametric Mapping software (SPM99, Wellcome
Department of Cognitive Neurology, London, UK). The data
were corrected for slice timing, motion, linear trend, and
were temporally smoothed with a high-pass filter using a
190-s cutoff. So that brain regions can be compared systemati-
cally across participants, the data were normalized to the
MNI template brain image using a 12-parameter affine trans-
formation and resampled to 3 � 3 � 3 mm3 voxels.

The percent signal change relative to the fixation condi-
tion was computed at each voxel for each stimulus presen-

tation. A single fMRI image was created for each of the
60 item presentations by taking the mean of the images
collected 4 s, 5 s, 6 s, and 7 s after stimulus onset (to
account for the delay in the hemodynamic response).

The data for each presentation of an object were further
normalized across all voxels to have zero mean and unit
variance to equate between-participants variation in the
exemplars. There were a total of 60 example images for
each participant (10 objects, six presentations). For the
analysis of interobject distances, the data were averaged
across the six presentations of each object, to get a more
reliable estimate of neural activity. Furthermore, to reduce
the dimensionality of the data, only voxels inside the
brain’s gray matter present in all participants, a total of
4,561 voxels, were included in the analysis. All voxels
within each of the anatomical regions were used for local-
izing category identification accuracies across participants.
A classifier was trained on five presentations of each
object—50 exemplars, and tested on the sixth presenta-
tion—10 exemplars. Classification performance was eval-
uated using sixfold cross-validation, such that one
exemplar per class (10 exemplars) was left out on each
cross-validation fold. Thus training and test sets were
independent [Mitchell et al., 2004].

RESULTS

First, we examined how similar the internal representa-
tion of objects is across participants, in terms of the consis-
tency of interobject distances derived from whole-brain
fMRI data. The internal representation of objects that was
common to 12 participants was revealed by the principal
components analysis of the compromise matrix. Despite
the considerable variation in the whole-brain activation
patterns among participants, the compromise matrix
explained 61% of the variability in the set of individual
cross-product matrices. Thus the agreement among the
participants was large enough to warrant an analysis
of the compromise matrix Sþ. There was a common com-
ponent and the interpretation of the compromise is mean-
ingful. At the same time, some portion of internal
representation of objects was idiosyncratic to individual
participants. Examination of the participants’ similarity
structure based on the analysis of the between-partici-
pants’ similarity matrix revealed that most participants
were similar in terms of their internal representation of
objects. Participants with the largest projections on the first
eigenvector (e.g., P6, P8) were more similar in terms of the
internal representation of objects, and only a few partici-
pants (for example, participant 12) differed from the rest
in their internal representations of objects. Participant
weights are shown in Figure 2. Participant differences in
this analysis could not be explained by either motion dur-
ing the scan or gender. Next, we examined the object
structure common to all participants. The first principal
component of the compromise matrix explained 16% of
the total variance and represented a contrast between tools
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and dwellings categories (see Fig. 3). The remaining compo-
nents were less amenable to interpretation; moreover, the
comparison of lower-dimensional representations derived
for each of the participants separately showed a substantial
amount of individual variation beyond the first component.
There was a commonality in the internal representation of
objects across participants, and part of the variability in the
data was explained by the category structure of the objects.

Individual differences in the internal representation of
objects can be seen from the examination of the projections

for each of the participants into the compromise space.
Each object’s position in the compromise space is the cent-
roid of this object’s positions for each of the 12 partici-
pants. Generally, there was more agreement among the
participants for the representation of some objects than for
others, highlighting individual differences among partici-
pants. For example, there was more agreement on castle,
and less on hut (see Fig. 4). The object representations of
Participant 12 (shown in red) differed most from those of
the other participants. This is the participant who was
assigned the lowest weight and contributed less to the
construction of the compromise (see Fig. 2).

Examination of similarities in interobject distances
revealed a common component in the internal representa-
tion of objects that is stable across participants and con-
tains category structure. Importantly, we note that the
commonality in the representations revealed by this analy-
sis is a commonality in the distances between internal rep-
resentations of objects, derived from whole brain fMRI
data, and does not imply that objects are encoded in the
same spatial locations across different people.

Second, to spatially localize the commonalities in repre-
sentation, we identified anatomical regions that contain in-
formation for category identification. For each participant,
a classifier was trained using voxels from only one ana-
tomical region (such as left inferior parietal lobule) at a
time. Out of 71 anatomical regions, 25 of them contained
adequate information for meaningful object category iden-
tification on average across participants (see Fig. 5). Thus,
the object categories are represented in many regions of
the cortex, and those regions are similar across

Figure 3.

Objects, shown as word labels, in the space defined by the first

two principal components of the compromise matrix. The first

component accounts for 16% of the variability in the data, and

contrasts tools (shown in red) and dwellings (shown in blue)

categories. The second component accounts for 13%, and is not

easily interpretable.

Figure 4.

Projection of participants into the space defined by the first two

principal components of the compromise matrix. Each object

location (shown as word label) is a weighted center of partici-

pants’ locations for that object. Each participant is shown in a

unique color. Participant 12 (shown in red) differs the most

from other participants.

Figure 2.

Participant weights derived from the eigen-decomposition of the

between-participants’ similarity matrix C. Participants with con-

figurations of objects similar to those of other participants were

assigned larger weights (e.g., P6, P8), and participants with con-

figurations of objects most different from those of others (e.g.,

P12) were assigned lower weights.
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participants. The regions that generated the highest accu-
racies across participants in this single-region identification
were the bilateral primary and secondary visual areas, cer-
ebellum, parietal and posterior temporal areas, and left
frontal areas: inferior, superior, and precentral gyri and
insula (Figs. 5 and 6). One participant (P4) had very high
category identification accuracies for most of the selected
anatomical regions, compared with the rest of the partici-
pants. Participants P4, P8, P6, and P11 had similar identifi-
cation accuracies for the selected anatomical regions and
had higher category identification accuracies compared
with other participants. Notice that these are the same par-
ticipants who were assigned larger weights in the analysis
of interobject distances, i.e., had similar patterns of inter-
object distances (see Fig. 2).

CONCLUSIONS AND DISCUSSION

We examined the commonalities in the neural represen-
tation of objects across participants in two complementary
ways. First, at the level of similarities between objects
based on the internal representation of objects derived
from whole-brain fMRI data. We have found that despite
the considerable variation in the whole-brain activation
patterns among participants there was a commonality in
the internal representation of objects, and part of the vari-
ability in the data was explained by the category structure
of the objects. Second, we identified regions that sup-
ported category identification of objects at the level of spa-
tially localized anatomical brain regions, despite the
individual differences in functional organization and the

Figure 5.

Mean classification accuracy for classification of tools versus

dwellings over 12 participants shown for each of the anatomical

regions. Vertical line indicates a threshold at a ¼ 0.001 level of

significance with Bonferroni correction for multiple comparisons.

Filled circles correspond to anatomical regions where mean ac-

curacy values across participants were significant (at a ¼ 0.001).

Anatomical regions with significant mean accuracy values across

participants are shown on the three-dimensional anatomical

rendering.
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methodological difficulty of normalizing the morphologi-
cal differences among participants. Thus we have demon-
strated the extent to which representations of objects and
their mutual similarities are shared across participants.
These findings indicate the commonality of the neural
basis of this type of object knowledge across participants
at the level of semantic property representations (and not
just visual features).

Examining the internal representation of objects derived
from fMRI data opens possibilities for future investigations
of individual differences in representations. Similarities
based on the internal representation of objects derived
from fMRI data can be compared with internal representa-
tions derived from empirically obtained judgment data or
other models of semantic space, for example those based
on feature norming studies [Cree and McRae, 2003; McRae
et al., 2005], or lexical co-occurrence models [Andrews
et al., 2009; Church and Hanks, 1990; Landauer and
Dumais, 1997; Lund and Burgess, 1996] using representa-
tional similarity analysis [Kriegeskorte et al., 2008].

Semantic categories of an object viewed by participants
were accurately identified from fMRI activity in several

regions, possibly reflecting the distributed representation
across cortical areas that are specialized for various types
of object properties [Goldberg et al., 2006; Haxby et al.,
2001; Martin et al., 2000]. For example, ventral premotor
cortex and posterior parietal cortex were previously impli-
cated in motor representations associated with tool usage
[Chao and Martin, 2000; Culham et al., 2006; Phillips et al.,
2002]. The inclusion of motor and somatosensory areas in
object representations is also consistent with ‘‘embodied
cognition,’’ a theoretical position holding that conceptual
representations contain perceptual and motor components
corresponding to human interactions with real entities in
the physical environment (e.g., Glenberg, 1997]. There are
multiple brain regions, besides classical object-selective
cortex that contain information about the object category.
These results are consistent with previous findings of the
distributed patterns of activation evoked by objects [Ishai
et al., 1999, 2000; Mechelli et al., 2004].

It is quite striking that single regions contain, on their
own, enough information to decode the object category.
We make no claim that the information in the different
regions is equivalent. Methods such as repetition priming

Figure 6.

Participant-specific accuracies for tools versus dwellings categories for the anatomical regions

with significant (a ¼ 0.001) mean identification accuracy across participants. Participants are or-

dered by whole brain classification accuracy. Accuracies above chance level are shown in color.
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[Grill-Spector et al., 1999; James et al., 2002; Vuilleumier
et al., 2002] or dynamically adaptive imaging [Cusack
et al., 2010] may be useful to further investigate what
object properties are represented in various regions, and to
link the observed neural data to the statistics of the stimuli
that were used in the experiment. Furthermore, although
beyond the scope of this paper, it might be of interest to
identify whether the information contained in the identi-
fied regions is used in behavioral performance [Williams
et al., 2007].

In summary, the application of various quantitative
techniques to fMRI is increasingly revealing the existence
of semantically organized structure in the pattern of fMRI-
measured brain activation during the perception of objects,
as well as revealing a degree of commonality across peo-
ple in this semantic organization.
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