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Research Article

Considerable advances have been made in developing 
brain-based theories of semantic knowledge, such as 
knowledge of concrete objects or emotions. Brain-imag-
ing research has uncovered sets of brain systems that 
collectively contain the neural representations of such 
concepts, including information about the way the 
human body interacts with them (in the case of objects) 
or their intensity (in the case of emotions; Just, 
 Cherkassky, Aryal, & Mitchell, 2010; Kassam, Markey, 
Cherkassky, Loewenstein, & Just, 2013). What has not yet 
been investigated with this approach is the neural repre-
sentation of specialized abstract knowledge acquired 
through academic study, such as science learning. The 
current article addresses this issue in the area of physics 
knowledge. In the current study, we investigated the pat-
terns of brain activity, as measured by functional MRI 
(fMRI), in students majoring in physics or engineering 
while they thought about physics concepts. It was pos-
sible to identify sets of brain locations and dimensions of 
knowledge representation that underlie the concepts 
and to test the resulting model in terms of its ability to 

classify physics-evoked activation patterns to which it 
had not been previously exposed.

Although physics is one of the fundamental sciences 
to which many students are exposed, there is sparse 
research into the brain basis of physics knowledge 
(Petitto & Dunbar, 2009). The current research begins to 
fill that void as well as to investigate what it means to 
have acquired knowledge of physics. In a superficial 
sense, physics terms are just new concepts whose defini-
tions have to be learned. However, physics concepts are 
different in kind from concrete nouns, action verbs, and 
even simple abstract concepts. They require new formu-
lations of knowledge that go beyond membership in a 
known category and include conceptions of nonvisible 
aspects of the physical world, mathematical knowledge, 
and the combination of complex features into a whole. 
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Abstract
We used functional MRI (fMRI) to assess neural representations of physics concepts (momentum, energy, etc.) in 
juniors, seniors, and graduate students majoring in physics or engineering. Our goal was to identify the underlying 
neural dimensions of these representations. Using factor analysis to reduce the number of dimensions of activation, we 
obtained four physics-related factors that were mapped to sets of voxels. The four factors were interpretable as causal 
motion visualization, periodicity, algebraic form, and energy flow. The individual concepts were identifiable from 
their fMRI signatures with a mean rank accuracy of .75 using a machine-learning (multivoxel) classifier. Furthermore, 
there was commonality in participants’ neural representation of physics; a classifier trained on data from all but one 
participant identified the concepts in the left-out participant (mean accuracy = .71 across all nine participant samples). 
The findings indicate that abstract scientific concepts acquired in an educational setting evoke activation patterns that 
are identifiable and common, indicating that science education builds abstract knowledge using inherent, repurposed 
brain systems.
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These complex concepts, acquired through formalized 
training, are qualitatively different from other abstract 
concepts that have been successfully identified from 
brain imaging data, such as emotions (Kassam et al., 
2013), generic abstract concepts (Wang, Baucom, & 
Shinkareva, 2013), and numerical quantities (Damarla & 
Just, 2013). It is possible that this recent record of success 
may have been due in part to the basic or primitive nature 
of the concepts studied.

Two properties set physics concepts apart: They refer 
to abstract properties of the physical world, and they are 
acquired through schooling. Of course, everyone has 
some naive knowledge of physics (e.g., “the bigger they 
are, the harder they fall” may be a naive definition of 
momentum, lacking the velocity component), but sci-
ences develop new concepts that are eventually commu-
nicated during formal schooling. In general, schooling 
has been shown to build not only new knowledge but 
also new brain capabilities; for example, instruction in 
reading brings forth a brain-based word recognition sys-
tem that has no innate biological support but becomes 
capable of rapid word recognition (Cohen et al., 2002; 
McCandliss, Cohen, & Dehaene, 2003).

The referents of physics concepts are sometimes tan-
gible, but at some level, they are always abstract. Abstract-
ness suggests some separation from perceptual and motor 
representations and the daily activities and thoughts that 
human beings have engaged in for millennia. Physics con-
cerns itself with matter and energy, which in some senses 
are very concrete, but understanding their nature in scien-
tific terms often involves concepts that are typically not 
directly observable. Yet people with knowledge of phys-
ics develop systematic conceptions or representations of 
such entities as velocity and momentum and, as we show, 
they also develop systematic neural representations that 
can be assessed in several ways that are unavailable to 
behavioral analysis. The aim of the current study was to 
uncover the neural structure of such entities.

The neural representations of 30 physics concepts were 
assessed in physics students using fMRI. The goals were 
(a) to determine whether the concepts have consistent 
neural signatures identifiable by a classifier, (b) to charac-
terize the underlying neural dimensions of representation 
that compose the signatures, and (c) to assess the com-
monality of the representations across participants.

Method

Participants

Nine right-handed adults (3 women, 6 men; age range = 
19–25 years) from the Carnegie Mellon community par-
ticipated. This sample size was in the 9-to-12 range used 
in previous machine-learning research from our lab (e.g., 

Mitchell et al., 2008). All participants gave signed informed 
consent approved by the Carnegie Mellon University 
institutional review board. All participants were under-
graduates who had completed at least two years of col-
lege (6 juniors or seniors) or graduate students (3) and 
were in physics or engineering. These students had taken 
physics courses beyond an introductory level and had 
numerous prior encounters with the physics concepts 
used as stimuli. Our goal was to characterize the neural 
representations of these concepts at this level of educa-
tion; we acknowledge that the representations of profes-
sional physicists may be different (Maloney, O’Kuma, 
Hieggelke, & Van Heuvelen, 2001; McDermott, 1998; 
 Stylos, Evangelaki, & Kotsis, 2008). All 9 participants con-
tributed usable data (within movement parameters).

Experimental paradigm

The stimuli were 30 physics terms from several physics 
topic areas: mechanics, electricity, thermodynamics, 
energy, light, and sound. The full list consisted of the terms 
acceleration, centripetal force, diffraction, direct current, 
displacement, electric charge, electric current, electric 
field, energy, entropy, force, frequency, gravity, heat trans-
fer, inertia, kinetic energy, light, magnetic field, mass, 
momentum, potential energy, radio waves, refraction, 
sound waves, temperature, thermal energy, torque, veloc-
ity, voltage, and wavelength. Each concept was presented 
six times (in six different random orders). Each word was 
presented for 3 s, during which the participant thought 
about the concept. This was followed by a 4-s rest period, 
during which the participant fixated on an “X” displayed in 
the center of the screen. There were seven additional pre-
sentations of a fixation “X,” 17 s each, distributed across 
the session to provide a baseline measure.

Task

The participants’ task was to actively think about the 
properties that they associated with the presented con-
cepts. Although the task required no overt response, it 
was far from passive; it required a controlled iteration 
through the properties of the concept and was rather 
demanding. To promote the participants’ consideration 
of a consistent set of properties or features across the six 
presentations of a term, we asked them to generate two 
or three properties for each term before the scanning ses-
sion; for example, the properties for the term velocity 
might be “vector quantity,” “movement related,” and 
“directional.” Each participant was free to choose any 
properties for a given item, and there was no attempt to 
impose consistency across participants in the choice of 
properties. Some of these participant interviews are 
excerpted in the Discussion section.
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fMRI procedures

Functional images were acquired on a 3.0-T scanner 
(Verio; Siemens, Erlangen, Germany) at the Scientific 
Imaging and Brain Research Center of Carnegie Mellon 
University. We used a gradient-echo echo-planar imaging 
pulse sequence with a repetition time of 1,000 ms, echo 
time of 25 ms, and a flip angle of 60°. Twenty 5-mm 
slices, aligned along the anterior commissure-posterior 
commissure line, were imaged with a 1-mm interslice gap 
and a 32-channel head coil. The acquisition matrix was 
64 × 64 with 3.125- × 3.125- × 5.0-mm in-plane resolu-
tion. Images were corrected for slice acquisition timing, 
motion, and linear trend, and they were normalized to 
the Montreal Neurological Institute template without 
changing voxel size (3.125 × 3.125 × 6 mm). The gray-
matter voxels were assigned to anatomical areas using 
masks from Automated Anatomical Labeling software 
(Tzourio-Mazoyer et al., 2002).

The percentage signal change relative to the fixation 
condition was computed at each gray-matter voxel for 
each stimulus presentation. The main input measure for 
the subsequent analyses consisted of the mean activation 
level over the four brain images acquired within a 4-s 
window, offset 4 s from the stimulus onset (to account for 
the delay in hemodynamic response). The percentage-
signal-change data of the voxels in the mean image for 
each word were converted to z scores.

Selecting voxels with stable  
activation patterns

A voxel’s activation profile refers to the vector of its 30 
responses (activation levels) to the 30 words during that 
presentation. The first criterion for voxel selection was a 
stable activation profile (i.e., stable tuning curves) over 
the 30 words across the six presentations of the set of 
words. A voxel’s stability was computed as the mean 
pairwise correlation between its 30-word activation pro-
files across all pairs of the presentations that served as 
training input for a given classification model. A stable 
voxel is thus one that responds similarly to the 30-word 
stimulus set each time the set is presented.

Factor analysis methods

The second criterion for voxel selection was the presence 
of an association with one of the factors emerging from a 
factor analysis of the activation data. To reduce the dimen-
sionality of the neural activity associated with the 30 differ-
ent stimulus items to a modest number of components, we 
applied a multilevel exploratory factor analysis procedure. 
We implemented a principal factor analytic algorithm, 
including varimax rotation, in MATLAB (Version 6.5; The 

MathWorks, Natick, MA), equivalent to SAS (Version 9.2; 
Cary, NC). The aim was not only to identify some of the 
main factors underlying the activation patterns but also to 
determine the brain locations of the stable voxels that 
were associated with each of the factors, and we expected 
that multiple locations would be associated with each fac-
tor. This factor analytic procedure is described in detail 
elsewhere (Just, Cherkassky, Buchweitz, Keller, & Mitchell, 
2014; Just et al., 2010). We describe some of the parame-
ters that are specific to the current study.

At the first level, 10 separate factor analyses were per-
formed on the data for each participant, one analysis per 
region: left and right frontal lobes, left and right parietal 
lobes, left and right temporal lobes (minus fusiform 
gyrus), left and right occipital lobes, and left and right 
fusiform gyrus (as defined in the Automated Anatomical 
Labeling atlas; Tzourio-Mazoyer et al., 2002). The input 
data were the matrix of intercorrelations among the acti-
vation profiles of the 120 most stable voxels in each 
region.1 The goal of each of these first-level factor analy-
ses was to reduce the data from the activation profiles 
across concepts from many stable voxels in each region 
to a few factors that characterized the profiles of most of 
the stable voxels in each participant. This exploratory 
factor analysis indicated a reasonable estimate for the 
number of factors to be expected, using the Kaiser crite-
rion (i.e., the minimal number of factors with an eigen-
value of 1).

A second-level, higher-order factor analysis was then 
run to identify factors that were common across regions 
and participants. (The search for commonality of factors 
across regions was motivated by the assumption that a 
factor would be composed of a large-scale cortical net-
work with representation in multiple and disparate brain 
regions.) The input to the second-level analysis consisted 
of the 10 dominant first-level factors obtained from the 3 
participants classified most accurately. Using the criterion 
that at least 5% of the variance had to be explained by a 
factor, we reduced this set of factors from 10 to 7. Using 
a stepwise addition of factors to the classification model 
until the accuracy stopped improving, we were able to 
remove 2 more factors, resulting in a final set of 5 factors. 
These factors were used in analyzing the data of the 
other 6 participants. (For the analysis of the data of the 3 
participants classified most accurately, the factors were 
derived from a factor analysis performed on the other 
two participants classified most accurately.)

Each factor was then mapped to several clusters of 
voxels that had high factor loadings and similar activation 
profiles (i.e., tuning curves over the 30 terms). Clusters 
were defined as six or more contiguous voxels. The num-
ber of clusters per factor ranged from 2 to 6 (with a total 
of 22 clusters for the five factors). These clusters were 
converted into spherical volumes with a radius of 10 mm 
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centered at an estimated center of mass of each cluster 
(centroids are listed in Table S1 in the Supplemental 
Material available online) for the 20 non-word-form clus-
ters (2 clusters centered in the left and right occipital 
cortex corresponded to a word-length factor and are not 
reported in the table); a voxel associated with more than 
one sphere was assigned to the factor that accounted for 
a higher percentage of the variance.

Machine-learning analyses

Gaussian naive Bayes classifiers with factor-based fea-
tures were used to identify the 30 physics concepts (for 
an overview of Gaussian naive Bayes classifier cross- 
validation as applied to fMRI data, see Just et al., 2010). 
The classifiers were trained using stable voxels from only 
a subset of the data (the training set) and were then 
tested on the remaining data (the test set) using a cross-
validation procedure. For the within-participants classifi-
cation, the classifier was tested on the mean of the two 
left-out presentations. This procedure was reiterated for 
all 15 possible combinations (folds) of training on a set of 
four presentations and testing on the average of the two 
left-out presentations. The between-participants classifi-
cation always left out the data of the to-be-classified par-
ticipant and trained the classifier on the remaining 
participants’ data. In the latter analysis, each participant’s 
data (from the 22 spheres that emerged from the two-
stage factor analysis) were averaged over the six presen-
tations. Then the 120 voxels with the most similar 
activation profiles (assessed by correlation) across the 
8 participants in the training set were selected as features 
for the classifier. This analysis assumed not only that the 
activation patterns across concepts were common across 
participants but also that the sphere locations of the key 
voxels instantiating that pattern were common.

Overview of the factor-labeling process

The interpretation of the factors that emerge in a factor 
analysis remains a subjective process, but in our case, the 
resulting interpretation was used to construct a classifier 
and then quantitatively evaluate its accuracy. The factor 
analysis provided two types of information that were help-
ful in interpreting the factors. One type of useful informa-
tion was the rank ordering of the 30 concepts by their 
scores on the factor. A clear example of this type of infor-
mation occurred when the rank order of the factor scores 
for the words in one of the factors matched the rank order 
based on the number of letters that the word or phrase 
contained, which indicated that the factor pertained to the 
encoding of the word form. In the ranked list, the terms at 
the two extremes of the ordering were particularly infor-
mative, sometimes immediately indicating what they have 

in common (e.g., a relation to thermal energy). The set of 
terms at the extremes might also have been correlated 
with the categorizations of the 30 items, or the extreme 
terms might have a shared superordinate concept. The 
second type of information from the factor analysis was 
the location of the voxel clusters that had high factor load-
ings for a particular factor. Although this evidence source 
for interpreting the factors included a reverse inference 
concerning the functions of various brain regions, these 
posited regions were subsequently used as part of a clas-
sifier model that was quantitatively evaluated. The classi-
fier tested how accurately a concept could be identified 
from its neural signature, assuming that the signature 
included elements (voxels) from the regions posited to 
underlie the neural representation. The high classification 
accuracies indicated that the inductive assumptions were 
good ones.

Categorization of the physics concepts

After the scanning session and without prior notice, par-
ticipants were asked to provide an open-ended categoriza-
tion of the 30 terms into four to six categories and to label 
each category. The goal was to determine how the catego-
rization of the 30 terms might be related to factor scores of 
these terms derived from the factor analysis. The responses 
were consolidated into six categories (“waves,” “electric-
ity,” “thermodynamics,” “mechanics,” “energy,” and “basic 
properties or other”); the precise labels varied across par-
ticipants but were highly similar (e.g., “light & waves” for 
“waves”). Each category was represented as a vector of 
length 30; binary values indicated whether a word was 
modally placed in a category. On average, participants 
matched in their category assignments on 78% of the items 
(omitting 1 participant who produced qualitatively differ-
ent categories). Very similar results (75% item agreement) 
were obtained in a norming sample of 5 participants who 
did not take part in the fMRI study (2 additional people 
with a physics background and 3 undergraduate psychol-
ogy majors with little knowledge of physics).

Results

Overview

It was possible to identify which physics concept the par-
ticipants were thinking about on the basis of the brain 
activation signature. The Gaussian naive Bayes classifiers 
were theory driven in that their features were voxels from 
regions derived from a factor analysis of the brain- 
activation data. This factor analysis was applied only to 
the conjoint data of the 3 participants with the most accu-
rately identifiable concepts (using an atheoretical classi-
fier). The factor analysis yielded five factors, each of 
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which could be traced back to a small set of voxel clus-
ters, for a total of 22 clusters. These clusters were trans-
formed into spheres from which voxels were drawn to 
serve as the classifier features. The four physics-related 
factors were interpretable as corresponding to causal 
motion visualization, periodicity, algebraic form (i.e., an 
equation or expression involving that term), and energy 
flow; a fifth factor was associated with word length.

Within-participants identification of 
physics concepts

The within-participants Gaussian naive Bayes classifier 
was trained on a subset of the data from a given partici-
pant and then tested on an independent subset of that 
same participant’s data, drawing voxels as features from 
the factor-derived spheres. All of the within-participants 
classifications were based on spheres derived from the 3 
best-classified participants (or from the 2 best, excluding 
a participant if he or she was 1 of that set of 3; see the 
Factor Analysis Methods section for a more detailed 
description). The 30 physics concepts were classified 
with a mean rank accuracy (hereafter, simply accuracy) 
of .74 (the critical value for above-chance performance at 
p < .01 was .55, obtained by permutation testing). All 9 
participants were classified significantly above chance 
(range = .64–.89). Three participants had particularly 
high accuracies; their mean accuracy was above .84 (.89, 
.83, and .81). These were the participants from whose 
factor analyses the voxel locations were derived for clas-
sifying the 6 other participants. The mean accuracy for 
these 6 participants was .69 (range = .64–.74). (When 
selection of voxels was made randomly, classification 
accuracy was no different from chance, which indicates 
that the factor analysis captured physics-relevant regions 
of cortex.)

Between-participants identification of 
physics concepts

The between-participants Gaussian naive Bayes classifier 
examined the similarity of the concept representations 
across participants; the classifier was trained on data 
(voxel-activation levels) from all but one participant and 
then tested on the data of the left-out participant, using 
voxel locations in the factor-derived spheres and repeated 
using each participant as the test participant. The features 
were the 120 voxel locations that had a consistent profile 
(high pairwise correlations between participant means) 
across the 8 participants in the training set. The mean 
between-participant classification accuracy for the 9 par-
ticipants was .71 (range = .54–.81). These reliable results (8 
participants with accuracy greater than chance at p < .01; 

1 participant was significantly different from chance at 
p < .05, critical value = .53) indicate that the factor-defined 
spheres captured a commonality across participants of the 
neural representations of these physics concepts.

Neural dimensions of physics-concepts 
representations

Four complementary approaches contributed to inter-
preting the factors: (a) the ordering of the 30 physics 
terms by their factor scores on a given factor, with par-
ticular attention to the terms at the extremes of the 
dimension; (b) the correlation between the factor scores 
and category groupings of the words by the participants 
(a vector of ones and zeros, where 1 = category member-
ship and 0 = out of category); (c) applying the latent 
semantic analysis (LSA) nearest-neighbor function to the 
participants’ property descriptions (Landauer & Dumais, 
1997); and (d) the locations of the factor-defined spheres 
and knowledge of which experimental manipulations 
have previously produced activation in those locations.

Causal-motion-visualization factor. Concepts with 
high factor scores for this factor, such as gravity and 
potential energy, could be interpreted as having a role in 
the visualization of motion and the causality of forces. 
These concepts were associated with voxel cluster loca-
tions in the left occipital-temporal-parietal junction, left 
intraparietal sulcus and left middle frontal gyrus. The 
physics terms with extreme scores on this factor (e.g., 
centripetal force, torque, displacement, and momentum) 
tended to be sorted into the category of “mechanics.” The 
factor-organized list of terms with high factor scores, cor-
related categories, and cluster locations are presented in 
Supplemental Table 1. A rendering of the four highly pre-
dictive sets of physics factor spheres is shown in 
Figure 1.

Periodicity factor. A second factor was interpretable 
as relating to periodicity. Wavelength, radio waves, fre-
quency, diffraction, and sound waves had high factor 
scores on this factor. The scores on this factor were cor-
related with membership in the “waves” category (r = .68) 
and the “energy” category (r = −.55). Brain locations cor-
responding to this factor included bilateral superior pari-
etal gyrus, left postcentral sulcus, left posterior superior 
frontal gyrus, and bilateral inferior temporal gyrus.

Algebraic-equation-representation factor. Concepts 
with high factor scores for this factor included velocity, 
acceleration, and heat transfer, all of which are particu-
larly strongly associated with familiar equations. This set 
of words was correlated with the “mechanics” category 
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(r = −.43) in the participants’ postexperimental categori-
zation task. The voxel clusters in this set were located in 
the precuneus, the left parietal lobe, the left inferior fron-
tal gyrus, and the left occipital gyrus. Parietal regions 
typically activate in calculation tasks (Dehaene, Molko, 
Cohen, & Wilson, 2004; Dehaene, Spelke, Pinel, Stanescu, 
& Tsivkin, 1999). The participants’ reports of the proper-
ties that they associated with each of the concepts pro-
vide converging evidence for the interpretation of this 
factor as involving an algebraic formulation. For exam-
ple, for the concept of velocity, several participants listed 
the algebraic formulation “Δx/Δt” as a property. For the 
concept of heat transfer, several participants listed the 
Boltzmann constant (k). For electric current, several par-
ticipants listed “Ohm’s law” as a property.

Energy-flow factor. A fourth factor can be associated 
with energy flow. Electric field, light, direct current, sound 
waves, and heat transfer were among the concepts with 
high scores on this factor. The factor scores were corre-
lated with membership in the electricity (r = .38) and ther-
modynamics (r = −.37) categories of physics terms. This 
factor was associated with voxel clusters in left intrapari-
etal sulcus, left precentral sulcus, left posterior middle 
temporal gyrus, and inferior frontal gyrus. The partici-
pants’ responses regarding the properties they associated 
with each of the concepts contributed to the interpreta-
tion of this factor as involving an energy flow. For exam-
ple, for the concept of direct current, several participants 
listed “flow” or “flow of electrons” as a property. For heat 
transfer, participants listed “radiation” as a property. For 

electric field, participants listed properties such as “radial 
from a point charge.” For this factor, the Suggested Upper 
Merged Ontology (Niles & Pease, 2001) was consulted to 
group the words with high factor scores into a common 
ontology. The higher level of abstraction that subsumes 
these concepts is the sense of energy flow in which 
energy radiates outward, or a “radiating of energy.”

Word-length factor. A fifth factor corresponded to the 
alphabetic length of the term used to denote each con-
cept (the factor scores of the concepts on this factor were 
highly correlated with word length, r = .88). The location 
of this nonphysics factor was almost exclusively in the 
occipital lobe, with small extensions into the inferior tem-
poral-occipital junction and the intraparietal sulcus near 
the occipital lobe. This factor simply reflects the neural 
encoding of the visual word form of the concept.

The factor labels were consistent with a nearest-neigh-
bor LSA of the properties of the concepts. The input to 
the LSA of each factor was a vector of the properties 
reported by the participants as being associated with the 
concepts that had high factor scores for that factor, and 
the output of the LSA was a list of semantic associates 
from the LSA space that were most related to the input. 
For example, for the algebraic-equation-representation 
factor, the word proportional was most related to the 
input properties, with a .71 LSA similarity score in the 
latent semantic analysis (on a scale from 0 to 1). Several 
other algebra-, measurement-, or equation-related words 
were among the top 15 LSA semantic associates (arith-
metic, joules, sec, constant, inversely, and magnitude) 

Fig. 1. Rendering of the four physics factors. Shown are right and left lateral views of the brain. The four sets of factor-related voxel clusters that 
emerged from the factor analysis of the activation evoked by the physics terms are colored as follows: pink indicates causal-motion visualization, 
green indicates periodicity, red indicates algebraic or equation representation, blue indicates energy flow, and yellow indicates overlap of adjacent 
clusters. The word-length factor is omitted here.
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For the energy-flow factor, electromagnetic was the most 
related semantic associate, at .82; other energy-flow-
related semantic associates included hertz, sine, fre-
quency, lambda, wave, amplitude, alternating, and 
radiate. For the periodicity factor, the similar semantic 
associates included lambda, vibrational, hertz, wave-
length, frequency, sec, motion, amplitude, and crests. For 
the causal-motion-visualization factor, the related seman-
tic associates included motion, acceleration, propor-
tional, velocity, and exerting. This complementary 
analysis of the participant-reported properties indicates 
that the proposed labeling of the factor analysis captured 
the participants’ intuitions.

Neural representations associated with the extracted 
physics factors were present to a large degree in all of the 
participants. To demonstrate the high level of consistency 
in the nature of each factor across participants, we 
assessed the similarity between the factor scores emanat-
ing from the factor analysis of the pooled data of the 3 
participants classified most accurately for the 5 highest-
ranked and 5 lowest-ranked concepts and the factor 
scores of these 10 concepts in individual participants.

The mean correlation was .57. This conservative anal-
ysis excluded the 3 participants from whose data the fac-
tors were extracted (when computed for all participants, 
the mean correlation was higher, r = .65). These correla-
tions also excluded the word-length factor (when the 
word-length factor was included, the mean correlation 
was higher, r = .6). The mean correlations between indi-
vidual participants and the group of the 3 best partici-
pants for individual factors ranged from a high of .86 for 
1 participant to a low of .35 for another participant, both 
for the periodicity factor. Thus the outcome of the factor 
analysis was very consistent across participants.

Discussion

Overview

The findings provide a new neurally based view of how 
physics concepts are represented in terms of brain orga-
nization. The activation patterns indicate a set of neural 
factors that underlie the representation of physics con-
cepts and enable accurate classification of these con-
cepts. The concepts are abstract and learned only through 
formal education, and yet interpretable factors associated 
with sets of regions that code various fundamental facets 
of these physics concepts do emerge. A classification 
model based on this postulated representation was suc-
cessful in identifying the concepts from their neural sig-
natures, which indicates that the factor analysis accurately 
extracted the underlying dimensions that organize the 
activation. The resulting classification accuracy using 
those factors stands on its own, independently of our 
interpretations of the factors.

The neural commonality of participants’ representa-
tions of physics concepts reinforces our interpretation of 
the findings. We suggest that there is a common path 
from the basic capabilities of the human brain to the 
abstract physics concepts, developed only in the past few 
centuries and currently taught through formal schooling.

Repurposing basic brain capabilities 
to represent abstract physics concepts

Learning culturally developed knowledge may rely on 
repurposing neural structures that were originally evolved 
for other or general purposes (Dehaene & Cohen, 2007). 
Each of the factors that emerged in our analysis can be 
viewed from this perspective. The voxel clusters associ-
ated with each of the factors include executive regions 
(frontal), spatial regions (parietal), and several LH lan-
guage areas implicating linguistic processing. Although 
the interpretations are speculative, the good performance 
of the theory-based classifier lends additional credence.

Causal-motion-visualization factor. The concepts 
associated with this factor entail motion that can be 
visualized and causality of the motion that can be con-
ceptualized. Physics terms from mechanics (centripetal 
force, displacement) had high scores on this factor. 
Mechanics is a branch of physics concerned with motion 
and forces on objects. Students probably attempt to 
explain phenomena of nature in terms of “X causes Y,” 
so it is not surprising that causality of forces emerges as 
one of the factors underlying the representation of sci-
entific concepts in the minds of students. For example, 
torque is the force that causes an object to rotate around 
an axis. Gravity is a force that causes two bodies to be 
attracted.

Several of the regions associated with this factor (left 
intraparietal sulcus, left middle frontal gyrus) have been 
shown to play a role in attributing causality when view-
ing objects that collided (Fugelsang, Roser, Corballis, 
Gazzaniga, & Dunbar, 2005; Han, Mao, Qin, Friederici, & 
Ge, 2011). The parahippocampus was activated when 
participants had to link a causal theory to observed data 
(Fugelsang & Dunbar, 2005). Yet another region, the 
occipital-temporal-parietal junction, was activated during 
the visualization of movement of objects and actions in 
space ( Jahn, Wendt, Lotze, Papenmeier, & Huff, 2012), 
suggesting that this factor may be related to causes of 
motion in particular. Of course, causality is involved in 
many other types of physics concepts (e.g., heat transfer, 
force), which are apparently less likely to evoke visual-
ization of a causally understood event. In general, under-
standing the systematicity of the physical world entails 
imputing causal relations between concepts, and we pro-
pose that a factor corresponding to a visualizable and 
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causally understood motion constitutes one of the dimen-
sions of representation of physics concepts.

Periodicity factor. Many of the concepts with high 
scores on this factor were associated with periodicity 
(wavelength, frequency). Periodicity is likely to be psy-
chologically salient because of human sensitivity to peri-
odic events in nature, such as biorhythms, lunar cycles, 
and ocean waves. The neural processing of periodicity 
has been studied in the context of music perception. 
Music and dance are typically associated with repeatable 
rhythms. Clusters in the dorsal premotor cortex associ-
ated with this factor activated when people tapped their 
fingers to rhythms ( J. L. Chen, Zatorre, & Penhune, 2006). 
Interfacing sensory cues (the auditory stimulus rhythm) 
with temporally organized movement (the rate of tap-
ping) builds on neural structures sensitive to periodicity 
that emerge in this factor.

This factor’s cluster centroids also included somato-
sensory and bilateral parietal regions that have been 
linked to motor imagery and simulation (H. Chen, Yang, 
Liao, Gong, & Shen, 2009). Thus the periodicity factor 
may involve a neural representation of temporally regu-
lar events. For example, experienced dancers activated a 
similar left postcentral-parietal region (Montreal Neuro-
logical Institute coordinates: x = −57, y = −27, z = 36) 
when watching rehearsed movements (Cross, Hamilton, 
& Grafton, 2006). When dancers watched any dance 
movements, the left intraparietal sulcus activated. These 
physics students may internally simulate motions and 
sensations related to periodic physics concepts. Thinking 
about periodic physics concepts could evoke an embod-
ied sense of experiencing the corresponding real-world 
phenomena.

Algebraic-equation-representation factor. The phys-
ics concepts that had high factor scores and algebraic 
equation associations included velocity and acceleration. 
Not surprisingly, the factor scores were correlated with 
the participant-generated members of the “mechanics” 
category (presumed to have strong associations with 
equations). Although many of the physics terms appear in 
a well-known equation, some terms have a stronger rela-
tionship to their algebraic expression than others. For 
example, an equation involving velocity comes to mind 
readily whereas an equation involving diffraction is less 
familiar. Other concepts with weaker equation associa-
tions (magnetic field) have lower factor scores.

This factor was associated with brain locations that 
were activated in algebraic or arithmetic processing 
( Gruber, 2001) including the precuneus, left intraparietal 
sulcus, left inferior frontal gyrus, and occipital lobe. Think-
ing of physics terms that are strongly associated with an 
equation need not entail calculation per se; it may simply 

trigger the retrieval of the equation. This retrieval may 
result in activation of regions involved in calculation even 
if the calculation is not actively occurring. Thinking of 
equation-based physics concepts engaged parietal 
regions: a language-based fact-retrieval region (extending 
superiorly to the intraparietal sulcus) seen in calculation 
tasks and an approximate calculation region (postcentral 
cluster extending posteriorly; Dehaene et al., 2004, 1999). 
In addition, the precuneus, left parietal, and left inferior 
frontal gyrus have been shown to activate in conjunction 
with executive processing and integration of visuospatial 
and linguistic information in calculation (Benn, Zheng, 
Wilkinson, Siegal, & Varley, 2012).

Energy-flow factor. Several physics concepts involve 
the idea of an energy or force that flows or radiates out-
ward. Concepts with high factor scores on this factor 
included members of the “electricity” category (electric 
field, direct current, voltage), the “thermodynamics” cat-
egory (entropy), and various other categories (torque, 
waves). Sensing the radiating warmth of the sun or fire is 
a universal experience that may be part of the basis of 
the brain processes that activated in association with this 
factor.

Energy flow may also entail visualization of a physical 
object that is related to the radiating of energy (e.g., radio 
waves could bring to mind a source, such as a musical 
instrument or an electronic communication device). 
Thinking about the semantic associations between 
abstract concepts and visualized concrete objects can 
modulate activity in the middle temporal area (Binder, 
Desai, Graves, & Conant, 2009). The voxel clusters in the 
classic language areas (left inferior frontal gyrus, superior 
temporal gyrus) associated with this factor activated dur-
ing the decoding of abstract concepts (Wang et al., 2013). 
Thus, thinking of energy flow concepts may evoke acti-
vation in regions that are involved in sensing energy, 
visualizing concrete objects, and semantically linking the 
concrete objects to energy flow.

Summary

There is a commonality among people in how they neu-
rally represent physics concepts. The commonality con-
sists of the sets of brain regions involved, the 
brain-activation signatures of specific concepts, and the 
organizing factors that underlie the activation patterns for 
the 30 concepts. These schooling-acquired concepts 
engender a brain-based systematicity (i.e., a repeatable 
activation pattern) and commonality (across people).

This research lays the foundation for a neural descrip-
tion of physics comprehension that goes beyond brain 
locations. The localization of factors enabled the formula-
tion of speculative descriptions of knowledge types and 
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informational codes. Although human brains are not 
expressly intended for representing physics knowledge, 
they are expressly intended for representing knowledge 
of the physical world. The findings suggest that physics 
schooling develops concepts grounded in the brain sys-
tems that represent the physical world.
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Note

1. The rationale for performing a separate factor analysis in 
each region rather than one factor analysis for the entire cor-
tex was to prevent any of the regions from dominating the set 
of input stable voxels, which the occipital regions would have 
otherwise. The choice of the particular number of voxels per 
region (120) was motivated by similar analyses in other data 
sets in which 120 was the smallest number of voxels that maxi-
mized classification accuracy.
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