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Recent findingswith both animals and humans suggest that decreases inmicroscopicmovements of water in the
hippocampus reflect short-term neuroplasticity resulting from learning. Here we examine whether such
neuroplastic structural changes concurrently alter the functional connectivity between hippocampus and other
regions involved in learning. We collected both diffusion-weighted images and fMRI data before and after
humans performed a 45 min spatial route-learning task. Relative to a control group with equal practice time,
there was decreased diffusivity in the posterior-dorsal dentate gyrus of the left hippocampus in the route-
learning group accompanied by increased synchronization of fMRI-measured BOLD signal between this region
and cortical areas, and by changes in behavioral performance. These concurrent changes characterize the multi-
dimensionality of neuroplasticity as it enables human spatial learning.

© 2015 Elsevier Inc. All rights reserved.
Introduction

The ability of the central nervous system to learn fromexperience and
adapt to the environment is undeniably the result of its remarkable ca-
pacity for structural and functional change. The termneuroplasticity refers
to awide range of such changes, both anatomical and physiological, and it
is studied at multiple levels and units of analysis. Neuroplastic mecha-
nisms include changes at molecular, biochemical, synaptic, dendritic, ax-
onal, morphological, and conectonomic levels. Part of the challenge of
understanding neuroplasticity lies in relating its multiple facets to each
other.

Although neuroplasticity has been studied in animals for over half a
century by examiningboth anatomical (Diamond et al., 1964) and phys-
iological (Zhang and Sejnowski, 2000) changes related to experience,
only recently has neuroimaging allowed neuroplasticity to be investi-
gated in vivo in humans. High-resolution structural images of the living
human brain enabled precisemeasurement of changes in tissue volume
longitudinally. Early correlational evidence showed that macroscopic
morphological changes could be detected with MRI. For example, the
posterior hippocampi of London taxi drivers with extensive navigation
experience were larger than those of control participants (Maguire
et al., 2000). Draganski et al. provided some of the first longitudinal ev-
idence of learning-induced structural plasticity in humans by showing
rain Imaging, Department of
e., Pittsburgh, PA 15213, USA.
voxel-basedmorphometric changes in the gray matter of bilateral tem-
poral visual motion areas and the left intraparietal sulcus following
threemonths of training on juggling (Draganski et al., 2004). Additional
studies of gray matter have suggested neuroplastic changes resulting
from intensive training or learning in domains such as medical knowl-
edge (Draganski et al., 2006), spatial memory (Maguire et al., 2006;
Woollett and Maguire, 2011), and aerobic exercise (Colcombe et al.,
2006; Erickson et al., 2011).

Another MRI-based structural imaging technique, diffusion-weighted
imaging, also provides evidence of neuroplascticity resulting from inten-
sive training and/or learning. Keller & Just showed that approximately
100 h of intensive reading remediation led to increased fractional anisot-
ropy (FA) in the left frontal lobe, and that this changewas correlatedwith
changes in reading ability among children (Keller and Just, 2009). Sholz
et al. found that six weeks of juggling training in adults resulted in FA in-
creases in thewhite matter beneath the right intraparietal sulcus (Scholz
et al., 2009). Additional studies now suggest adult FA increases following
balance training (Taubert et al., 2010), workingmemory training in aging
participants (Lövdén et al., 2010; Engvig et al., 2011), and meditation
training (Tang et al., 2010). A number of reviews and critiques of both
the gray matter and white matter changes resulting from relatively
long-term, intensive learning or training regimens in adults have recently
appeared (Zatorre et al., 2012; Lövdén et al., 2013).

Although these human in vivo experimental studies of neuroplasticity
have involved extensive training, and have examined rathermacroscopic
structural changes, it is clear that learning-related changes in the brain
must occur over shorter intervals and at more microscopic levels (Fu
and Zuo, 2011). The cellular bases of experience-based structural changes
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in both gray and white matter remain speculative, but in a pioneering
study that related structural and cellular changes, Blumenfeld-Katzir
et al. demonstrated that diffusion imaging can detect neuroplastic chang-
es in gray matter (Blumenfeld-Katzir et al., 2011). Following long-term
training (a week) on a spatial-learning water maze task, rats showed de-
creases in diffusivity of water in the hippocampus and increases in quan-
titative cellular-level markers for synapses and astrocytes.

These findings of neuroplasticity have been extended to humans and
to shorter training episodes in a series of recent papers from the same lab-
oratory (Sagi et al., 2012; Hofstetter et al., 2013; Tavor et al., 2013). Sagi
et al. trained both rats and humans on a spatial route-learning task for
2 h, comparing diffusion-weighted imaging before and after the training.
The humanparticipants engaged in a video-gamedriving taskwhere they
practiced driving the same route repeatedly. Compared to a control group
that practiced on many different routes, this learning group showed ef-
fects of the spatial learning and decreased diffusivity in the left hippocam-
pus and right para-hippocampus after only 2 h of practice. Rats trained on
the water maze for only 2 h showed decreased diffusivity in the
hippocampi (greater decreases on the left) and increases in markers for
synaptic changes, astrocyte changes, and in brain-derived neurotrophic
factor (BDNF), which may be a marker for long-term potentiation.
Hofstetter et al. showed that in both rats and humans, diffusivity de-
creased as a result of learning in the fornix connecting the hippocampus
to the diencephalon. Moreover, this decrease was correlated with the
changes in diffusivity in the hippocampus, although no histological mea-
sures in the rats were reported. Tavor et al. repeated this same experi-
ment with both a standard diffusion tensor model and with a more
complex diffusion sequence and model (the composite hindered and re-
stricted model of diffusion (CHARMED) proposed by Assaf and Basser
(2005)). They again found decreased diffusivity in the left hippocampus,
bilateral para-hippocampal gyrus and the bilateral insula, and showed
that the changes in the left hippocampus and right parahippocampal
gyrus were accompanied by an increase in the volume of water in the re-
stricted compartment of the CHARMEDmodel.

Neuroplasticity resulting from short-term learning has also been ex-
plored by comparing fMRI-measured functional connectivity (FC) in
within-subject training experiments. Functional connectivity is a mea-
sure of the correlation or covariance across time of changes in the levels
of activation among spatially separated brain regions. One of the earliest
studies using the technique was in fact a learning study (Büchel et al.,
1999). Participants learned spatial locations of presented objects, and de-
spite decreases in activation with repeated presentations of the item
(repetition suppression), the correlation of the activation time series be-
tween ventral object processing cortex and dorsal spatial processing cor-
tex increasedwith learning. This task-related FC is thought to capture the
dynamic functional changes in regional communication across networks
of areas involved in the learning task, and it could be amanifestation of a
number of relatively low-level short-term neuroplastic processes
(e.g., LTP, synaptogenesis, astrocyte signaling). In addition, a number of
studies have also used intrinsic FC, (sometimes referred to as resting
state FC (rsFC) because it is often measured without the participant
performing a specific task) to look at the effect of learning (reviewed
by Kelly and Castellanos (2014)). Such intrinsic connectivity increases
are found in humans for simple motor learning (Albert et al., 2009)
and for learning to navigate in a virtual environment (Woolley et al.,
2015). There is ample evidence this measure of functional connectivity,
involving very slow low-frequency correlations between regions while
the participant is unoccupied with an experimenter-imposed task, in-
creases followingmany types of learning, althoughwhether such chang-
es should be considered functional or structural remains controversial.

Here we investigate how a diffusion-based measure of spatial learn-
ing, presumably reflecting structural changes in the brain, is related to
changes in brain function. We attempt for the first time to relate the
learning-related changes in diffusivity in the spatial encoding network
to fMRI-measured changes in both intrinsic FC and task-related FC across
the network. The much slower, intrinsic synchronized fluctuations in
BOLD signal intensity among regions are thought to reveal the networks
of connectivity resulting fromahistory of co-activation (see Buckner et al.
(2013) and Raichle (2011), for recent reviews), whereas task-related FC
is thought to reveal online changes in communication among regions ne-
cessitated by performance of the cognitive task. We askwhether very re-
cent history (over the course of the previous hour) can effect changes in
these networks that can be related to the learning that has occurred dur-
ing that time.Weexaminewhether a period as short as 45min of practice
in traversing the same virtual route is sufficient to produce the changes
seen in the previous studies.

Themethodology explores whether the learning changes can be de-
tected with a much shorter diffusion scan that nevertheless provides
higher angular resolution. This speed-up benefits from the simulta-
neous multi-band stimulation (SMS) imaging (Sotiropoulos et al.,
2013) used in the Human Connectome Project, but with significant im-
provements. The design of the experiment is shown in Fig. 1.

Materials and methods

Participants

Twenty-nine right-handed adults (26 females, 3 males, between the
ages of 19 and 31 years, Mean = 22 years, SD = 2.9 years) from the
Carnegie Mellon University community participated. All participants
gave signed informed consent approved by the CarnegieMellon Institu-
tional Review Boards. All participants had less than 5 h of “action” video
game experience (i.e., games played from the first-person perspective
and requiring navigation in a virtual environment) during the two
years prior to the experiment. These participants could therefore be
considered novices who were not familiar with playing action video
games. This inclusion criterion is more stringent than that used by
other researchers (Bavelier et al., 2011) for considering a participant
as a non-video game player. It did, however, result in a much higher
proportion of female volunteers who met the criteria.

The participants were assigned to either the Route-Learning or the
Control group with the restriction that the groups be as closely matched
as possible on age, gender, and ethnicity. The Route-Learning group
consisted of 14 participants (Mean age = 22.4 years, SEM= 0.91, 11 fe-
male and three male, two Asian, one African American, nine Caucasian,
one Hispanic). The control group consisted of 14 participants
(Mean age = 22.1 years, SEM = 0.6, 13 female and one male, four
Asian, 10 Caucasian). An additional participant was removed from the
Control group due to excessive motion (see Analyses below) during
one of the scans.

Experimental paradigm

To measure functional and structural changes resulting from prac-
tice on the driving task, two separate 30-min scanning sessions were
conducted for all participants, with a one-hour interval between them.
During the interval between the scanning sessions, participants in the
Route-Learning group practiced driving the same route 20 times. During
this same time the Control group practiced driving 19 different routes
(one route being the same one practiced by the Route-Learning group,
and repeated at the beginning and end of the intersession practice
session).

Driving simulation

For the virtual driving environment, we adapted code from the open
source motorsport simulator Speed Dreams 2.0 (http://www.speed-
dreams.org). This software provides high-quality graphics and very re-
alistic visual and physics simulation of driving. We carefully selected
the simulated automobile and the virtual routes driven, and adjusted vi-
sual and physics simulation parameters such that the driving task
would not be difficult to for our sample of very novice players of

http://www.speedreams.org
http://www.speedreams.org


Fig. 1.Design of the experiment. (a) The experiment consisted of two scanning sessions separated by a 1-h interval during which participants in each group practiced the driving task for
45min. Each scanning sessionwas identical and involved acquisition diffusion images in 30 directionswith a b-value of 1000 s/mm2, and also a functional (T2*-weighted)MRI scan during
simulated driving. During the 45-min training session between the scanning sessions, the learning group practiced the driving task by repeating the same route on each learning trial
(i.e., lap), for a total of four blocks of five trials each. In contrast, the control group completed the same number of trials but practiced a different spatial route on each trial, with the ex-
ception that the route learned by route-learning groupwas also driven by the control participants at the beginning of the first block and at the beginning of the last block (thefigure depicts
only the first trial of each block). (b) The fMRI session included two, 2-min simulated drives and three baseline rest periods. Both drives involved the route repeatedly practiced by the
route-learning group, and participants were instructed to pretend they were driving the route using a mouse to control the virtual vehicle, in the same way they had been trained in a
preliminary practice session.
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games requiring navigation through a virtual environment. (A complete
specification of all parameter settings and routes chosen are available on
request from the corresponding author.) We chose to use a computer
mouse as the input device for driving control because it could be used
in the scanner environment as well as in the training session. During
the training session the simulator ran under a 64-bit version of
Windows 8 Pro on an Acer laptop (Aspire V7) with an Intel® Core™
i7 2.4 GHz processor, 8 GB of RAM, and an NVIDA GeForce GT 720M
graphics card. The computermousewas a LogitecwirelessM705 optical
mouse.
Pre-scanning driving practice

All participants practiced the driving task for approximately 15 to
30 min before any MRI scanning took place. They were first instructed
in the use of a computer mouse to control the virtual car, steering it
with the mouse and using the left mouse button to accelerate and the
right mouse button to brake or reverse the direction of movement. All
participants practiced on the same route during this time and this
route would not be seen again during the actual experiment. It was
intended only to give the groups comparable practice in controlling
the car. Participants were told that their goal was to learn to control
the car without leaving the road. They were given feedback in the
form of “damage” points that accumulated when they left the virtual
road, and they were also given feedback about the speed they were
driving and their lap time at the end of each drive. Participants were
first required to complete the full route without leaving the road. After
they met this goal, they were given five more practice trials on the
route and told to try to increase their speed. All participants were able
to complete the criteria within the 30 min allotted for this phase of
the experiment. This practice route was not used again during the ex-
periment, and the pre-training was designed only to give our novice
participants sufficient practice on the visuo-motor components of the
task to make the lap times and driving accuracy meaningful behavioral
measures of learning the more subtle aspects of the task.
MRI sessions

In each MRI scanning session, the paradigm and image acquisitions
were identical, both within and across the groups. Participants were
told that during the first part of the scanning session structural images
of their brain would be taken and that they could relax and watch a
movie if they chose to do so. Following scout images used to select
slice locations, two diffusion scans were collected using the same 30
gradient vector directions but with opposing phase encoding polarity.
Next two gradient echo field mapping sequences were collected, one
with each phase encoding polarity, and then a high-resolution T1-
weighted anatomical scan was acquired. This structural imaging took
approximately 20 min, and was followed by a 4.5 min functional EPI
scan. This scan included two, 2-min blocks in which the participant
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watched a video of the critical test route being driven by an expert driv-
er. Participants viewed the video through a pair ofmirrors over the head
coil that reflected the image projected onto a screen anterior to the par-
ticipants head. They were given a mouse and instructed to pretend that
theywere controlling the car as they did in the practice. (Note that they
did not have actual control the virtual car in the scanner because it was
important that the timing and visual stimulation of traversing the virtu-
al route be identical across sessions and across participants. All partici-
pants' mouse movements were observed to ensure that they were
attending to the task). This functional imaging run also included three,
30-s blocks of rest, during which an “x” was displayed in the center of
the screen and the participant was instructed to fixate on it and to
relax and clear their mind.

Inter-scan training session

During the intermediate learning session, participants were re-
moved from the scanner and taken to a nearby practice room for train-
ing. The Route-Learning group practiced the same route that they had
just encountered in the fMRI session of the first scanning session. The
learning consisted of four training blocks of five laps of simulated driv-
ing of this route, with instructions to try to improve their speed at driv-
ing the route while maintaining “safe driving” (i.e., avoiding leaving the
virtual road). At the end of each of the four training blocks, participants
in the Route-Learning group were asked to complete additional behav-
ioral measures. They were given 8 screen shots of random locations
along the route, and asked to arrange these in the order they would
be encountered while driving. In addition, they were asked to sketch
the outline of the track, and to place letters corresponding to each
screen shot at the place on the drawing where they estimated each of
the screenshots would be seen. These screen shots were presented in
a randomly permuted order for each block and each participant in the
Route-Learning group. Participants were given no feedback about accu-
racy on either the screen shot sorting or the route drawing task.

Participants in the Control group also completed four blocks of driv-
ing, but each block consisted of five different routes, with the total dis-
tance of all 20 trials being approximately equal to the total distance
driven by the Route-Learning group during the inter-scan training ses-
sion.We also attempted to equate the overall driving difficulty encoun-
tered across the two groups by selecting tracks for the control group to
practice that on average had comparable numbers of curves and degrees
of curvature to the track practiced repeatedly by the learning group. The
Control group did not complete the picture sorting or route drawing
tasks, and were not expected to learn anything about the routes. They
were simply instructed to try to improve their driving speed without
sacrificing accuracy of driving, and thus served as an active visuo-
motor learning control group. Critically, only one route was repeated
for this group, once at the beginning (trial 2) and at the end of the train-
ing session (trial 19). This was the same route that the Route-Learning
group practiced repeatedly and the same route that both groups saw
in the scanner during the fMRI imaging sessions.

Image acquisition

All neuroimaging data were acquired on a Siemens Verio (Erlangen,
Germany) 3.0 T scanner at the Scientific Imaging and Brain Research Cen-
ter of Carnegie Mellon University with a 32-channel Siemens receive coil.
Both the diffusion-weighted structural images and BOLD-weighted
functional images were acquired using the multi-band sequences (ver-
sion R011 for Syngo VB17A) provided by the University of Minnesota
Center for Magnetic Resonance Research (https://www.cmrr.umn.edu/
multiband/). Diffusion-weighted, field-mapping, and functional images
were all collected as oblique-axial scans aligned with the Anterior Com-
missure–Posterior Commissure (AC–PC) line at midline.

The diffusion-weighted images were collected with the monopolar
cmrr_mbep2d_diff sequence (http://www.cmrr.umn.edu/multiband) in
54 slices (an ascending interleaved acquisition with 2.4-mm-thick slices
and no inter-slice gap). The matrix was 96 × 96 and FOV was 230 mm,
resulting in 2.4-mm isotropic voxels (TR = 2264 ms, TE = 74.8 ms,
multi-band acceleration factor = 3, number of diffusion encoded
directions = 30, diffusion b-value = 1000 s/mm2, number of non-
diffusion encoded images = 4, bandwidth = 1860 Hz/Pixel, partial Fou-
rier factor of 6/8). The 30 diffusion encoding vectors were taken from
standard Siemens gradient table. Two sets of these imageswere collected
for each participant in each scanning session (pre-training and post-
training) with opposite phase encoding directions (anterior N posterior
(A N P) and posterior N anterior (P N A)) so that geometric distortions
and eddy currents could be corrected using FSL v. 5.0 tools (topup and
eddy). The total acquisition time for these two scans was 3 min and 20 s.

Field map images were collected with a vendor-provided Siemens
gradient echo sequence (gre_field_mapping) and with the same geom-
etry and orientation as the diffusion data (i.e., 2.4 mm isotropic voxels
with 54 slices). These were also collected with both A N P and P N A
(TR = 572 ms, TE1 = 5 ms, TE2 = 7.46 ms, flip angle = 70°,
bandwidth = 301 Hz/Pixel). Total acquisition time for both of these
field maps was 3 min and 40 s.

A T1-weightedMPRAGE volume scanwas also collected during each
scanning session. This scan used the Siemens turbo-flash sequencewith
a GRAPPA in-plane phase-encode parallel acceleration factor (i.e., iPat
factor) of 2. These data were reconstructed as 176 1-mm sagittal slices
with an in-plane resolution of 256 × 256 and a 256-mm FOV, resulting
in 1-mm isotropic voxels (TR = 2300 ms, TE = 1.97 ms, TI = 900 ms,
flip angle = 9°, bandwidth = 240 Hz/Pixel). Total acquisition time for
this scan was 5 min and 21 s.

Finally, each scanning session ended with a functional scan using the
Minnesota Multi-band cmrr_mbep2d_bold echo-planar sequence
(http://www.cmrr.umn.edu/multiband). An ascending interleaved acqui-
sition was used, with 60 3-mm-thick AC–PC aligned oblique-axial slices
and no inter-slice gap. The matrix was 64 × 64 and FOV was 230 mm,
resulting in 3-mm isotropic voxels (TR = 1000 ms, TE = 30 ms,
bandwidth = 2790 Hz/Pixel, multi-band acceleration factor = 4, and re-
constructed on-line with the SENSE1 coil combination method). Each
functional run acquired 340 images (5 min and 40 s), once before and
once following, the inter-scan training session.

Behavioral analysis

The behavioral data collected during the training included lap times
and “damage” scores, for each lap of each route driven. In addition, after
each block of four laps, the learning group provided: 1) A score for
sorting screen shots taken at equidistant points along the route but
with the initial point chosen randomly. 2) A drawing of their estimate
of the layout of the route. 3) A score for placement of screen shots at
their estimated location on the drawing of the route. The driving data
for the two identical routes encountered by both groups (early and
late in the training) were analyzed with 2 (time) × 2 (group) mixed
ANOVAs. For the Learning group, raw lap time data were fit with a
power curve and damage scores were analyzed for a linear trend in
the repeated measures. To explore differences in the types of spatial
learning tapped by each of the behavioral measures we also conducted
simple regression among these behavioral measures and stepwisemul-
tiple regression analyses to evaluate their relationships to the neuroim-
aging data. These analyses were carried out in SAS v. 9.3 software
(http://www.sas.com/en_us/software/analytics/stat.html) using Proc
Mixed and Proc Reg.

The landmark sorting task was scored by following the general pro-
cedure reported by Sagi et al. (2012). For each of the eight screenshots
in each test, one point was given for each of the other screenshots that
it correctly preceded in the participants sorting response. If the partici-
pant placed thefirst image encountered on the track in thefirst position,
they were awarded 7 points. If they placed the second image
encountered in the second position the received 6 points, and so forth.

https://www.cmrr.umn.edu/multiband/
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Thus a perfect arrangement would receive a maximum score of 28
(i.e., 7 + 6 + 5+ 4+ 3+ 2+ 1), and a completely reversed ordering
would receive a score of 0. The landmark placement task was scored in
the same way and so highly correlated with the sorting measure that it
was not analyzed further.

Each route sketch was saved as a digital file of 591 × 724 pixels. For
each sketch, a Procrustes analysis (Gower, 1975) was carried out to
quantify the dissimilarity between the sketch and the reference tem-
platemap of the route. This analysis first calculates an optimal superim-
position of each sketch to the template by translating, rotating, and
scaling the sketch to match the template by minimizing the sum of
squared deviation between the two based on only these transforma-
tions. Following this Procrustean superimposition, the root mean
squared error in the fit provides a “dissimilarity” or “distance”measure
of difference between the sketch and the template.

Image analysis

Preprocessing of the diffusion-weighted images (DWI) made use of
tools from FSL v. 5.0.8 (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) (Smith
et al., 2004), and code written in-house for motion correction of diffu-
sion data (Jung, 2010; Jung et al., 2013) running under MATLAB®, v.
R2011a (www.mathworks.com/products/matlab). Brain-only masks of
images at each stage of the following procedures were extracted using
the FSL's “bet2.” Estimation and correction of geometric distortion was
carried out for each session (pre-training and post-training) using the
eight non-diffusion-weighted images (b-value = 0), four collected
with each phase encoding direction (A N P, P N A) (Andersson et al.,
2003). FSL's “topup” tool was first used to estimate a warp-field and
the data were subsequently resliced and the two diffusion runs aver-
aged using the “applytopup” tool. FSL's “eddy” tool was then used to si-
multaneouslymodel the eddy current effects and headmotion effects in
the run-averaged data using default values for all parameters (i.e., a
quadratic spatial model, no spatial filtering, and five iterations of the
non-linear estimation).

Additional pre-processing involved generation of an estimated
diffusion-weighted image for each corrected diffusion-weighted image
on the basis of average signal intensities across the corrected un-
weighted (b-value = 0) images (Jung, 2010; Jung et al., 2013). Given
the acquisition parameters of each image the estimated signal for each
voxel in each diffusion direction can then simply be derived from the
Bloch–Torrey equation (Torrey, 1956), resulting in a “simulated”
diffusion-weighted image that is perfectly co-registered to the mean
of the corrected un-weighted images. We then used each simulated
image as the target for a 12-parameter affine co-registration with the
corresponding corrected DWI. This estimation and reslicing was carried
out with FSL's “mcflirt” program, using a correlation ratio cost function.
Finally, each of the affine transformation matrices computed above
were combined, and a single reslicing of the original data was carried
out with FSL's “applywarp” and the direction of the diffusion vectors
were rotated on the basis of this combined transformation prior to
fitting a weighted-least squared diffusion tensor model with FSL's
“dtifit.”

Because the pre-training and post-training scanning involved sepa-
rate scanning sessions, with the participant repositioned as closely as
possible, but not perfectly for the post-session scan, an additional co-
registration was required to compare the before and after repeated
measures of DTI metrics within each participant. The fractional anisot-
ropy (FA) images calculated for each session provide exquisite contrast
for carrying out this co-registration and so these were used in prefer-
ence to themean of the un-weighted (b-value=0) images, and because
FA is a normalizedmeasure (the standard deviation of three eigenvalues
from theDTIfit), changes in signal due to scanner drift between sessions
can be ignored. Specifically, a forward (pre- to post-training) and back-
ward (post- to pre-training) 12-parameter affine transformationmatrix
was calculated with FSL's “flirt” for each participant's two FA images,
and the half-way transformation matrix of each was used to re-slice
the data into a position half-way between the two FA images. This
method ensures that both the pre- and post-training images undergo
comparable spatial blurring during the re-slicing process. These trans-
formations were then applied to each of the scalar images resulting
from the tensor fit (i.e., λ1, λ2, λ3, FA, MD).

To allow comparison across participants and groups, we used FSL's
“fnirt” tool with default parameters for FA to FA non-linear co-
registration, to estimate the warping from each participants pre- and
post-training FA map to the FMRIB_FA_1mm template included in FSL.
This nonlinear warping was applied to each of the scalar DTI measure
maps for each participant and session. This procedure is identical to
that used in the Tract-based Spatial Statistics (Smith et al., 2006), except
that for the diffusivity data we used a voxel-based approach rather than
projection of diffusion data to the white matter skeleton defined by
peak FA, because our interest is in diffusion changes in not only in
white matter but also in gray matter. Following the initial transforma-
tion to the FMRIB_FA_1mm template, a study specific template was cre-
ated by averaging all FA data from both groups and both sessions, and
this was used as the target for final non-linear spatial normalization of
each FA image. These final warp coefficients were then applied to all
of the scalar DTI-measure maps. For the FA data we also generated a
study-specific white matter skeleton and applied the traditional TBSS
approach of projecting FA values to a mean FA skeleton.

Although FA is a normalized measure, the diffusivities are not, and
they are therefore susceptible to any number of equipment- or
environment-related changes between the scans. We tested this direct-
ly by comparing pre- and post-training non-DWI (b-value= 0) means
for differences in signal (this was carried as a paired t-test across all par-
ticipants using non-parametric permutation testing with FSL's “ran-
domize” tool with 50,000 permutations and threshold-free cluster
enhancement parameters set to the default values for 3D rather than
2D data to correct for multiple comparisons) (Smith and Nichols,
2009). There were no reliable differences between sessions at a
corrected P b .05 level, but there were differences at an uncorrected
P b .05, suggesting some unknown systematic change that could affect
the diffusivity measures. Global normalization (i.e., adjusting the T2-
weighted signal intensity across the brain to have the samemeanwithin
a participant between the two sessions) of the non-DWI means re-
moved any trend of differences between scans in an otherwise identical
analysis.We therefore included themeanwhole-brain T2-weighted sig-
nal intensity of the non-DWI images from each session and participant
as a covariate in all further analyses of diffusivity changes. These analy-
ses were also performed using FSL's “randomise” utility and involved
50,000 permutations and TFCE correction for multiple comparisons
with alpha = .05 corrected.

Pre-processing of the T2*-weighted EPI data was carried out with a
combination of tools from MATLAB® v. R2011a, SPM12, and FSL v.
5.0.8. Because the position of the headwas not perfectly aligned between
sessions, we first corrected each run separately for geometric distortions
using the gradient echo field map collected within the same session and
FSL's “prelude” and “fugue” tools. Motion was then estimated separately
within each run with FSL's “mcflirt” using default (six-parameter affine,
reference as the temporally middle image, normalized correlation cost
functions settings) (Jenkinson et al., 2002) and the “fsl_motion_outliers”
script was used to calculate the temporal derivative of the root-mean-
square variance (DVARs) (Power et al., 2012) between each image and
the next and motion outliers were identified as any point with a DVAR
value greater that the 75th percentile + 1.5 times the interquartile
range. Indices for images considered outliers were saved in a regressor
so that their effect could be removed (i.e., “scrubbed”) in all general linear
models (GLMs) to be conducted. There was no difference between
groups in the mean DVAR metric and no group × time interaction, al-
though there was a main effect of time, with higher motion in the post-
training scan (Pre-training Mean = 11.3, SEM = 0.4; Post-training
Mean = 12.0, SEM = 0.4; F(1, 26) = 11.96, P b 0.002). Despite this

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://www.mathworks.com/products/matlab
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small difference, the number of outliers identified in each participant did
not showmain effects of group or time, nor an interaction (Mean=25.2,
SEM= 10.0).

To allow comparison across sessions, a co-registration strategy similar
to that used for the DWI data was carried out. The mean of each motion
corrected fMRI run was used to calculate a forward (pre- to post-
training) and backward (post- to pre-training) six-parameter affine
transformationmatrixwith FSL's “flirt” tool. The half-way transformation
matrix of each was then saved to later re-slice the data into a position
half-way between the two means. These means were averaged for each
participant and a non-linear transformation between each participant's
mean EPI image and the MNI averaged 152-participant T2-weighted
template was carried out using FSL's “fnirt” tool with default registration
schedule parameters for intra-modal T2-weighted registration. All partic-
ipants' data were then averaged to create a study specific EPI template,
and the transformation from the participant's mean to this new template
was saved as the final non-linear warping. (Note that final re-slicing of
the data was all done in a single step that concatenated all the pre-
calculated transformation matrices together and used a final sync inter-
polation to 2-mm isotropic voxels in MNI space.)

For the analysis of intrinsic functional connectivity, each participant's
co-registered, motion-corrected, and spatially-normalized data were
band pass filtered using FSL's “fslmaths” tool, retaining frequencies be-
tween approximately 0.01 Hz (high-pass sigma = 50) and 0.1 Hz (low-
pass sigma = 5). A region of interest was defined by the voxels within
the left hippocampus showing a reliable decrease in mean diffusivity
for the Learning group in the group analysis of the diffusion data, and
the time-series of these 126 voxels were averaged within each partici-
pant. The averaged time-series of all voxels within each region of interest
defined by the automated anatomical labeling (AAL) atlas (Tzourio-
Mazoyer et al., 2002) were also calculated for each participant, and all
pairwise correlations were calculated among regions of interest, Fisher-
z-transformed, and submitted to a group (2) × time (2) × Region (72)
mixed ANOVA. Analysis of task-related functional connectivity was iden-
tical, except that the data were not temporally filtered, and only voxels
with the AAL regions that exceeded a threshold of t N 3.0 for the driving
minus baseline activation general linear model (GLM) contrast described
below, were considered. AAL regions with fewer than eight voxels show-
ing a response to the task at this threshold were ignored. These criteria
thus focused the task-based connectivity analysis on regions that were
truly involved in the simulateddriving task. For bothmeasures of connec-
tivity, the analysis was carried out only on the two 120 s blocks of simu-
lated driving carried out in the scanner, and excluded both the fixation
baseline intervals and thefirst 10 s of simulated driving, to remove the in-
fluence of the onset of visual stimulation and motor responses from the
correlation of time series across regions.

In addition, changes in intrinsic and extrinsic FC were examined on a
voxel-wise basis using the filtered time course in the same seed region in
the left hippocampus of each participant for the calculation of partial-
correlation maps using FSL's FEAT and including motion parameters
and DVAR-based outliers as additional confound variables. The partial-
correlation maps for each participant and each timepoint were Fisher-z
transformed. Voxel-wise group analyses of the whole-brain correlation
maps were then conducted in a voxel-wise mixed ANOVA including
group (learning vs. control) and time point (pre vs. post) factors.

Activation in the fMRI data was examined using SPM12. The co-
registered, motion-corrected, and spatially normalized data were
smoothed with a eight-mm full-width at half-maximum Gaussian spa-
tialfilter and submitted to a first-level GLM for each participant. Regres-
sors for the pre-training simulated driving intervals, and the post-
training simulated driving intervals were convolved with the default
SPM12 hemodynamic response function, and an additional covariate
specifying motion outliers was included as a finite impulse response
function, as well as a high-pass filter (with a period of 120 s) to remove
linear trends in the data. The first-level models were fit with an
autoregressive (AR(1)) error covariance structure using restricted
maximum likelihood estimation (REML). The contrast of beta values be-
tween simulated driving and rest was calculated, as well as the differ-
ence in beta values between the pre-training and post-training
sessions. These contrasts were entered into a second-level group
(2) × time (2) voxel-wise analysis using a family-wise cluster-size cor-
rection formultiple comparisons based on random field theory (with an
initial cluster-forming criterion of P b .0001).
Results

Diffusion-weighted changes with learning

The principal prediction was that a mean diffusivity (MD) decrease
in the hippocampus (reflecting microstructural changes in the regions)
would be accompanied by an increase in functional connectivity
(reflecting changes in brain function) between hippocampus and
other cortical regions involved in learning. Moreover, both types of
changes were expected to be related to the degree of performance im-
provement on the route-learning task. As an indication of the specificity
of the effect, such route-learning-related hippocampal changes were
not predicted for a control group that had a similar amount of practice
in the driving task, but not on any single route. Below each of the com-
ponent results are described first, followed by a description of the struc-
tural–functional concurrence.

The structural predictionwas confirmed by reliably decreasedMD in
the left hippocampus of the route-learning group (peak t(13) = 2.48,
P b .02). Although the effect was left-lateralized, as shown in Fig. 2a,
overall diffusivity in both the left and right hippocampi decreased reli-
ably for the participants who repeatedly practiced the same route. In
contrast, participants who had comparable amounts of driving practice
but on a number of different routes showed no change in diffusivity in
either the left hippocampus or the right hippocampus (Fig. 2b).

The region of the left hippocampus showing the reliable decrease in
the voxel-wise analysis constitutes only a fraction of the total volume of
the structure (approximately 14%). The center ofmass of the regionwas
at −28, −29, −7, and the peak decrease was at −34, −28, −10, in
MNI coordinates. This location is somewhat more lateral, posterior,
and superior to the previously reported location of the peak voxels
showing MD decrease in a similar route leaning task (Sagi et al.,
2009). Nevertheless, the left hippocampal cluster shown in Fig. 2a ex-
tended from −42 to −4 mm in the anterior–posterior dimension
adding confidence to the finding of a left hippocampal MD decreases
with route learning. Comparison of the cluster with the Jülich histolog-
ical atlas (Amunts et al., 2005; Eickhoff et al., 2007) indicated that this
region included portions of the dentate gyrus and the cornu ammonis.
In addition, its relatively posterior location is consistent with the hippo-
campal area found to increase in volume with experience in driving a
London taxi cab (Maguire et al., 2000).

Several other (left-lateralized) white and gray matter regions also
showed mean diffusivity decreases in the spatial learning group, as
assessed with a voxel-wise mixed ANOVA (Fig. 2c). Although not pre-
dicted, neuroplasticity in some of these cortical regions seems plausibly
related to the learning task. For example, the precuneus has been asso-
ciated with egocentric navigation in a number of imaging studies
(Schindler and Bartels, 2013; Chadwick et al., 2015). The role that
other regions might play is less clear, though, and we therefore analyze
below the functional connectivity among these areas showing learning-
related structural change. The control group showed no changes in MD
in the hippocampus or parahippocampal gyrus. Both groups, however,
showed reduced diffusivity in the left corona radiata (P b .05 corrected)
although the changes were in the left external capsule for the control
group and in the extreme capsule for the route-learning group (see Sup-
plementary Fig. 1). If changes in less complex visuo-motor learning can
be detected with this method, similar decreases in MD in the two
groups would also be expected in other areas.
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fMRI-measured intrinsic functional connectivity

It is important to determine whether the diffusivity changes with
route-learning described above are related to changes in brain function,
specifically, to changes in intrinsic functional connectivity. The band-
pass filtering of the time-series data, retaining only frequencies between
0.01 and 0.1 Hz, should effectively remove any correlation in the data as-
sociatedwith the rapid activation changes involved in the simulated driv-
ing task, as well as with artifacts from heart rate, and respiration (Lowe
et al., 1998). This analysiswas restricted to connections involving the por-
tion of the left hippocampus showing a reliable decrease in the MD data
for the learning group. The intrinsic connectivity was calculated between
the mean time course of this region and that of each of 73 cortical and
subcortical regions of interest (defined by the Anatomical Automatic La-
beling (AAL) atlas (Tzourio-Mazoyer et al., 2002)). A mixed ANOVA
(group × time × connection) on these data showed no evidence of
three-way interaction, although there was of course a robust main effect
of connection (F(70, 1820)= 21.85, P b .00001)). Of most interest, how-
ever, was an overall group by time interaction (F(1, 26) = 7.00, P b .02).
The learning group clearly showed a larger increase in these low frequen-
cy physiological fluctuations of bold signal between the left hippocampus
and the rest of cortex (see Fig. 3a). A relationship between changes in
these low frequency fluctuations and changes inMDmay reflect relative-
ly long-lasting changes in communication among these regions by virtue
of repeated co-activation during the training period. Thefinding supports
the contention that the diffusivity changes are not simply epiphenomena,
resulting from activity within the hippocampus, but rather, they repre-
sent functionally relevant structural changes.
Although knowledge of the anatomical connectivity linking the af-
fected region of the left hippocampus to the rest of the brain in humans
is sparse, there are a number of regionswe expected to co-activate with
the hippocampus during spatial learning and hence show functional or
structural plasticity as a result of the learning. These regions include the
bilateral temporal regions involved in visual motion processing, and the
left and right intraparietal sulci involved in spatial processing. In addi-
tion, given manual motor requirements, one might expect that spatial
procedural learning could involve changes in functional or structural
connectivity with the contralateral motor hand area in the left
precentral gyrus, with the left supplementary motor area, and with
the ipsilateral cerebellum. We therefore conducted separate ANOVAs
for the fMRI-measured intrinsic connectivity between each of these re-
gions and the left hippocampal region of route-learning decrease inMD.

The route-learning group showed reliably greater increases in in-
trinsic functional connectivity between the left hippocampal region of
interest and the right posterior inferior temporal gyrus (interaction
F(1, 26) = 7.27, P b .05, corrected) right anterior inferior temporal
gyrus (interaction F(1, 26) = 7.05, P b .05, corrected), the right
intraparietal sulcus (interaction F(1, 26) = 4.54, P b .05). No Group by
Time interaction was found for any of the left hemisphere homologues
of these regions (all Fs b 1).

In contrast to the strongly right-lateralized changes in intrinsic con-
nectivity for regions involved in the visuo-spatial learning aspects of
the driving task, the changes in regions typically involved in procedural
aspects of motor learning were left-lateralized (all of the participants
were right-handed). In such regions (precentral gyrus, supplementary
motor area), reliable interactions were found only in the left hemisphere
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Fig. 3. Functional connectivity changeswith route learning. (a) Increase in intrinsic functional connectivity (low frequencyfluctuations among anatomical regions) for each group between
the left hippocampal area showing diffusivity changes in the route-learning group and all other regions. (b) Increase in task-related functional connectivity for each group before and after
training, averaged across activated voxels among pairs of 73 cerebral regions (only time-series for voxels with a t-value N 3.0 for the contrast of simulated driving with fixation were in-
cluded). Following the training, only the route-learning group showed a reliable increase in functional connectivity related to the driving task performed in the scanner. Error bars repre-
sent the standard error of the mean.
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(for the precentral gyrus (interaction F(1, 26)=5.54, P b .05); for the left
supplementary motor area (interaction F(1, 26) = 5.02, P b .05). In the
right hemisphere homologues, neither of the interactions approached
significance (both Fs b 1.0). All three regions of interest in the
cerebellum, however, showed the reliable group × time interaction.
(For the vermis, interaction F(1, 26) = 6.54; for the left cerebellum,
interaction F(1, 26) = 5.38; and for the right cerebellum, interaction
F(1, 26) = 4.78, P b .05).

We also performed an exploratory analysis of the intrinsic connec-
tivity among the regions shown in Fig. 2. Although there were no reli-
able group by time interactions when the analysis was restricted to
these regions localized independently by the diffusivity changes in the
learning group, there was a reliable main effect of group for the func-
tional connectivity between the precuneus and the left insula and
(F(1, 52) = 4.55, P b .05), with the learning group showing higher in-
trinsic connectivity than controls. There was also a trend toward an in-
crease in connectivity across groups for thepair involving the precuneus
and the left hippocampus (F(1, 52), P b .10). As noted above, it is not sur-
prising that both the structural and functional connectivity of the
precuneus might be affected in the present task.

Finally, when the same data were analyzed using the voxel-wise,
seed-based approach, no reliable differences between groups or be-
tween scans were found after correction for multiple comparisons.
Therewas, of course, highly reliable intrinsic functional connectivity be-
tween the hippocampal seed and a variety of cortical and subcortical
structures within each scanning session. Supplementary Fig. 2 displays
the simple main effect of intrinsic connectivity with the left hippocam-
pal seed region for each of the groups and each of the time points.

fMRI-measured task-based functional connectivity

It was expected that therewould be an increase in task-related func-
tional connectivity with route learning, as has been previously reported
in other learning tasks (Büchel et al., 1999; Schipul et al., 2012). Unlike
the intrinsic connectivity analysis, this analysis applies no temporal fil-
tering, allowing dynamic changes in the functional co-activation of re-
gions resulting from the driving task to be detected. The task-related
functional connectivity of the twogroupswas very similar prior to train-
ing, but the route-learning group had significantly higher functional
connectivity following the training session, as summarized in Fig. 3b.
A group by time mixed-model ANOVA with connection treated as a
random variable, showed a reliable interaction between group and
time in overall functional connectivity (F(1, 26) = 246.76; P b .0001).

The group difference in the change in task-based functional connec-
tivity was not specific to connections involving the left hippocampal
MD-defined region. A group × time × connection mixed ANOVA that
was restricted to connectionswith the left hippocampalMD-defined re-
gion showed no reliable three-way interaction, nor a group × time in-
teraction (Ps N .80). Furthermore, separate planned group × time
mixed ANOVAs were conducted based on the same predictions as
those for intrinsic connectivity between the left hippocampal region
and bilateral temporal, intraparietal, precentral, supplementary motor,
and cerebellar regions. None of these connections (which had shown
a group × time interaction for intrinsic connectivity) showed this inter-
action for the task-related functional connectivity data. Thus, the overall
task-relevant activity became more synchronized in the route-learning
group, indicating an improvement in brain function with training, but
these changes were not specific to connections between the left hippo-
campus and other regions.

Relation between structural changes and behavioral performance changes

The prediction that decreases in diffusivity would be related to in-
creases in performance on the task, was also supported by the data. Dif-
ferences in lap times between each participant's first and last drive
were calculated for the route that was common between the two groups.
(The control participants drove this same track in only the first and last
block of the training session, as described in the Materials and methods
section.) At the conclusion of training, the route-learning group was sig-
nificantly faster (t(26) = 2.39, P b .05;Mean=111 s, SEM=4.0 s) than
the visuo-motor learning control group (Mean = 125 s, SEM = 4.5) on
this track, confirming that the route-learning group had learned some-
thing beyond motor control of the virtual car during the training (see
Supplementary Fig. 3a). Of particular interest is the relationship between
the change in diffusivity and change (decrease) in the driving time across
participants. The changes in hippocampal diffusivity were reliably corre-
lated with changes in driving performance for the route-learning group
(r = .55, P b .05). There was no such correlation for the visuo-motor-
learning control group.

Neither of the other measures of learning (decreased damage,
screenshot sorting, route sketching) collected for this group were reli-
ably related to the change in diffusivity.
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fMRI activation

The fMRI assessment of BOLD signal during the simulated driving task
showed activation in a network of driving-related regions, as displayed in
Supplementary Fig. 4. These activation levels were similarly affected by
the training in the two groups. A mixed voxel-wise (2) group ×
(2) time ANOVA found no reliable differences between the two groups
in the BOLD activation, at either time point, nor did it indicate any chang-
es in the signal with time either as a main effect or a simple effect within
each group.

Additional behavioral changes with learning

As briefly reported above, lap times reliably decreased only in the
route learning group (P b .001), and this group was reliably faster than
the control group in navigating the same route by the end of practice
(P b .001). The changes in lap times over the course of learning followed
a power curve, which explained 65% of the variance (Supplementary
Fig. 3a). In addition, the measure of damage (occurring during the
car's contact with another object) decreased during the course of learn-
ing, but this effect was not significant.

Participants in the route-learning group also improved their ability
to correctly order of sequence of landmarks encountered along the driv-
ing course. There was a significant linear increase in picture sorting ac-
curacy across the training period (P b .05, Supplementary Fig. 3b).
Furthermore, the ability to draw the layout of the track they were prac-
ticing improved over the course of training, as shown in an example
participant's data in Supplementary Fig. 3c and by the significant de-
crease (P b .05) in the mean Procrustes distance between each succes-
sive drawing and the template image of the actual course driven
(Supplementary Fig. 3d).

The various behavioral measures of learning that showed significant
improvement over the course of training were not correlated with each
other. A stepwise multiple regression including all of these measures
(improvement in lap time, maximum speed, damage scores, screen
shot sorting scores, and Procrustes distance between sketches and the
true route traveled) was conducted to determine if the separable types
of learning independently predicted changes in either diffusivity or
functional connectivity. The improvement in lap time together with
the improvement in screen shot sorting accounted for 54% of the vari-
ance in the decrease in left hippocampal diffusivity (F(2, 11) = 6.45,
P b .02), with the partial correlations for each of these variables
explaining significant portions of the variance (for the change in lap
times, partial R2 = .30, P b .05, and for the change in sorting scores, par-
tial R2 = .24, P b .05). Similar analyses for the other regions showing a
decrease in diffusivity found no reliable relationships with any of the
learning measures, although the relationships were in the expected di-
rection. Changes in sketch dissimilarity explained 18% of the variance
in parahippocampal diffusivity change (P= .13), and sorting scores ex-
plained 19% of the change in intrinsic functional connectivity (P = .12)
between the left hippocampus and the rest of the cortex, but no other
effects approached significance.

Individual difference measures of spatial ability were equivalent be-
tween the two groups. One highly-relevant measure of individual differ-
ences in cognitive ability, the Santa Barbara Sense of Direction Scale
(Hegarty et al., 2002), predicted the route-learning participants' increase
in speed on driving the course. This prediction held both early in the
training session (for the first block the correlation between the SBSOD
and the increase in speedwas .57 (P=0.05)) and late in the training ses-
sion (for the fourth block this correlation was .53 (P=0.06)). No similar
relationship was found for the control group, and no similar relationship
was foundwithmental rotation abilitymeasured by the Vandenberg and
Kuse (1978) test, which assesses the ability tomentally visualize and per-
form imagined transformations on objects in the environment. The re-
sults indicate that only the ability to update one's position in space
influenced the ability to learn the route with repeated practice.
Discussion

The new findings reveal how structural changes in the hippocam-
pus are associated with spatial learning (as assessed with mean dif-
fusivity) and are related to BOLD signal changes in other cortical
and subcortical regions. The major new result is that increases in in-
trinsic connectivity, resulting from the route learning and structural-
ly plastic in nature, occur between areas of gray matter involved in
spatial navigation and the portion of the left hippocampus that
shows the decrease in mean diffusivity. This finding establishes the
critical link between a structural brain change and a functional
brain change during learning.

The findings also show that mean diffusivity changes in the left hip-
pocampus and parahippocampal gyrus are detectable after only 45min
of training on an implicit route-learning task. These changes may pro-
vide an important marker for gray matter structural change resulting
not only from route learning, but also learning and memory related to
neuroplasticity in general. The findings also show that we may not yet
have reached the lower limit on howmuch training is necessary to pro-
duce such changes, indicating remarkably rapid short-term structural
neuroplasticity of the hippocampus. The study provides an important,
independent confirmation of the meticulous previous work carried
out in a single laboratory (Blumenfeld-Katzir et al., 2011; Sagi et al.,
2012; Hofstetter et al., 2013; Tavor et al., 2013). Like the previous
work, this study shows that themagnitude of diffusivity changes in hip-
pocampus are significantly related to the behaviorally-measured mag-
nitude of the learning changes.

Task-related functional connectivity involving the synchronization
of BOLD activation among gray matter regions was also sensitive to
the learning effect, as indicated by an overall increase in this measure
of information processing capacity and interregional communication
in the group that was trained on the single route. These learning-
related changes in task-induced functional connectivitywere not specif-
ic to areas showing diffusion-weighted changes. We suggest that they
may reflect more cognitive or strategic changes resulting in greater
cortico-cortical co-activation of distant task-relevant regions. In con-
trast, learning-related changes in intrinsic connectivity were found for
connections with the hippocampal region of gray matter structural
change. Thus, the implicit learning of spatial or navigational information
appears to indeed be reflected in structural neuroplasticity, rather than
in more dynamic or cognitive changes in information processing for
navigation (e.g., a conscious change in strategy).

It is now clear that intrinsic (or resting-state) functional connectivity
found in the synchronous time-courses of BOLD signal among regions is
the result of spontaneous and low-frequency volleys of neuronal activ-
ity, as demonstrated by simultaneous measurements of fMRI data and
local field potentials, infra-slow fluctuations, delta-band activity, direct
current potentials and other electrophysiological indices provided by
EEG and ECoG. In addition, fluctuations in measures of regional oxygen
availability, cerebral blood flow, and vasomotion appear important in
coupling the neuronal and BOLD responses (Lu and Stein, 2014). The
large proliferation of studies measuring it is a testament to the wide-
spread acceptance of its importance in understanding the brain. In
terms of metabolic cost, its maintenance likely dwarfs that required by
task-related activity (He and Raichle, 2009). Despite such insights into
its mechanisms, its evolutionarily beneficial effect on survival remains
elusive. It reflects anatomical connectivity but is not constrained by it
(Raichle, 2011).

We suggest that the increase in intrinsic connectivity seen in the
route-learning group is the result of co-activation of the extraordinarily
neuroplastic hippocampal place encoding regions and the network of
spatial processing areas that receive input and output. Although this
synchronization of low frequency BOLD signal fluctuations is referred
to as intrinsic in the literature, it nevertheless changed in the short
term as a function of training, so it is not intrinsic in the sense of being
inherent or hard-wired into the system.
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The specificity of the changes in learning-related functional connec-
tivity was remarkable. Connectivity increased between the posterior
dorsal region of the human dentate gyrus (a region known to be in-
volved in spatial learning) (Moser and Moser, 1998; Brown et al.,
2014), and the right intra-parietal sulcus, right anterior and posterior
temporal areas (cortical regions activated strongly in navigation and
spatial memory tasks). These findings are consistent with both the ana-
tomical connectivity among these regions (Schmahmann and Pandya,
2006), and with the functional activation of these particular cortical
areas in navigation and spatial memory tasks (Gomez et al., 2014).

Conclusions

Diffusion changes were shown to provide an alternative marker of
spatial route-learning that may be more sensitive to short-term spatial
learning than activation or task-evoked functional connectivity changes.
Mean diffusivity changes in the left hippocampus occurred only in the
learning group. The magnitude of the diffusivity changes are related to
behavioral improvement on the task, and the regions that are connected
to the human posterior-dorsal dentate gyrus of the left hippocampus
also show short-term changes in slow (b0.1Hz), but synchronized,fluc-
tuations in the fMRI-measured BOLD signal. The findings suggest that
short-term quantitative changes in intrinsic connectivity may in fact
be more easily detected than microstructural changes in white matter,
and can clearly be related to microstructural changes in the hippocam-
pus. The combination of the two methods may provide a narrow
enough spatial and temporal window to employ in microgenetic
(Siegler, 2006) longitudinal studies of many types of learning, and
promises to extend our understanding of learning in humans to more
fine-grained levels of analysis.
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Supplementary Figure 1. Diffusion data. (a) Locations of the reduced MD in the putamen and external capsule 

for the learning group (blue) and in the internal capsule in the control group (red). (b) Distribution of 

premotor, supplementary motor, and somatosensory, and motor hand area endpoints of estimated 

tractography fibers seeded from regions in a.  
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Supplementary Figure 2. Voxel-based analyses of intrinsic functional connectivity with the left hippocampal 

area of diffusivity decrease as the seed region.  Colored voxels show reliable intrinsic synchronization with left 

hippocampus thresholded at P < .001, family-wise error corrected for multiple comparisons.  (a) Before 

training the learning group (blue) and the control group (red) showed parietal connectivity with the 

hippocampal seed region. (b) Following training, this hippocampal-cortical connectivity was no longer 

detected at this threshold in either group. At the post-training fMRI scan, the spatial-learning group showed 

reliable connectivity between the hippocampus and precuneus, and the sensory-motor control group showed 

reliable connectivity between the hippocampus and left precentral motor areas (right most image). In addition 

the learning group showed more extensive areas of reliable connectivity with the putamen and caudate. 

Despite these robust hippocampal connectivity effects in both groups and at both time points, no reliable 

differences were found between scans for either group or between groups for either scan.   
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Supplementary Figure 3. Behavioral data.  (a) Mean improvement in lap times for the learning group (blue) 

and for the control group (red) when driving the exact same route.  (b ) Mean improvement in scores on the 

sorting task. (c) The true layout of the learned route (top) and an example of one route-learning group 

participant’s sketches of their mental map of the course during training (bottom). (d) The average Procrustes 

distance between the sketches and the true route decreased over the course of training.  Error bars represent 

the standard error of the mean. 
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Supplementary Figure 4. Functional magnetic resonance imaging results. Group statistic maps  showing 

reliable differences for the contrast of blood oxygenation level dependent (BOLD) fMRI-measured activation 

for the simulated driving blocks vs. the resting fixation blocks (P < .05, corrected for all voxels in the brain 

using random field theory). The activation was found in the large scale network previously shown to be 

involved in such driving tasks, but showed very little change with learning.   (a) Control group activation before 

training. (b) Control group activation following driving practice on different routes. (c) Learning group 

activation before training. (d) Learning group activation following repeated practice on the same route. There 

were no reliable effects of either group or time, nor was there an interaction, for the BOLD activation data.  
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