
The relationship of the mind to the brain has established 
itself at the forefront of scientific interest in large part be-
cause of the rapid development of functional magnetic res-
onance imaging (fMRI). Exciting new findings have often 
been expressed in the form of compelling images that in-
dicate that brain areas become activated in various tasks or 
fail to activate in various special populations. These brain 
images appear to tell a simple and straightforward story. 
The invited inference is that a one-to-one mapping exists 
between the activation of brain areas and the execution of 
certain psychological processes, such as the process of 
perceiving a face. At first glance, this story imposes some 
order on the results; some consistencies emerge across 
brain imaging studies, and some imaging results seem to 
be related to studies of brain lesions in neuropsychologi-
cal patients. But the consistencies are limited in scope, 
and the mapping between the infinity of possible tasks 
and the finite—indeed, rather small—number of activat-
ing brain areas identified by neuroimaging techniques is 
greatly underdetermined, if not logically troubling. We 
propose that the idea of a one-to-one mapping of cortical 
activation to high-level cognitive processes that is sug-
gested by the brain activation images is incorrect—a gross 
oversimplification of a more complex (and more interest-
ing) many-to-many mapping, governed by more subtle 
organizational principles. In brief, we argue that thinking 
is a network phenomenon and suggest the beginnings of a 
theory of the organization of cortical networks.

This article explores how the various cortical areas that 
subserve cognition might function in conjunction with 
each other. The main objectives are to specify the operating 

principles that govern the complex, dynamic, and adaptive 
relationships among brain areas and to relate brain func-
tion to cognitive function. It is not our goal here to specify 
the cognitive specializations of each brain area, although to 
describe how areas work together, we necessarily have to 
hypothesize the cognitive endowments of some brain areas. 
We believe there is value in developing a theory of how 
various brain areas collaborate in order to realize cognitive 
information processing, despite the remaining uncertainty 
about the functional specializations of the individual areas.

As functional imaging provides progressively finer de-
tail about brain activation, computational modeling pro-
vides a theory-building workspace in which the new pieces 
of information can be put together and their cofunction-
ing can be examined. In this workspace, the component 
mechanisms can be specified in detail and their ability to 
account for the observed phenomena can be tested, as a 
few initial attempts have shown (Arbib, Billard, Iacoboni, 
& Oztop, 2000; Fincham, Carter, van Veen, Stenger, & 
Anderson, 2002; Horwitz & Tagamets, 1999; Just, Car-
penter, & Varma, 1999). One of the goals of this study is 
to instantiate the operating principles in a cognitive neu-
roarchitecture, 4CAPS, that has been developed expressly 
for this purpose. 4CAPS is a computational system for 
modeling cognitive performance and brain activity in a 
range of cognitive tasks, permitting comparisons of model 
accounts and empirical findings.

A central theme of our proposal is that resource con-
straints shape cognition. This theme has recurred in the 
scientific study of human thinking, from Miller’s (1956) 
“magical number seven” article on the limitations of 
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short-term memory, to contemporary research on how 
working memory limitations bound cognition (Miyake & 
Shah, 1999). We propose that resource constraints apply 
not just at the level of cognitive information processing, 
but also at the level of cortical information processing. 
This is a simple and inescapable consequence of the fact 
that the brain, like all biological systems, is subject to hard 
constraints on bioenergetic and structural resources. This 
simple consequence, however, has profound implications: 
If cognition is the emergent product of computation in a 
network of collaborating brain areas, and if computation 
within each brain area and communication between brain 
areas consume resources, then resource constraints must 
shape cortical information processing, and thus cognitive 
information processing as well.

It is common to view resource constraints negatively, as 
a restriction on cognition. We offer a more nuanced, and in 
many ways more optimistic, perspective here. Specifically, 
we show that resource constraints, working in conjunction 
with other principles of brain organization, are fundamen-
tal to the dynamic and adaptive nature of thinking at both 
the cortical and cognitive levels. For example, when a task 
is sufficiently difficult, resource demands on the canoni-
cal large-scale network for performing the task will exceed 
resource supplies, and additional brain areas with spare 
resources and relevant functional specializations will be 
recruited to absorb the excess workload (Just, Carpenter, 
Keller, Eddy, & Thulborn, 1996). In this case, recruitment is 
on a just-in-time and as-needed basis. When a focal lesion 
drastically reduces the resources available in the canoni-
cal network, additional areas are similarly recruited on a 
more lasting basis. As we show below, resource constraints 
provide a unified account of these and other common pat-
terns of brain activation observed in neuroimaging studies. 
The silver lining of resource constraints will be seen to be 
resource optimization—the efficient deployment of finite 
resources to maximize throughput—and the remarkable 
adaptiveness of human information processing.

The remainder of this article is composed of the follow-
ing sections: first, a set of operating principles that govern 
the resource-constrained nature of information processing 
in the brain, motivated by functional neuroimaging find-
ings; next, the instantiation of these operating principles 
in the 4CAPS cognitive neuroarchitecture; then a series of 
computational models that account for the behavioral and 
brain activation measures expressed within 4CAPS of sev-
eral complex cognitive tasks—sentence comprehension, 
problem solving, spatial reasoning, and dual-tasking—in 
order to establish the empirical content of the operating 
principles and neuroarchitecture; next, a comparison of 
4CAPS with other cognitive neuroarchitectures, identify-
ing points of overlap as well as its unique claims; and to 
conclude, a discussion of future directions.

I. OPERATING PRINCIPLES FOR 
CORTICAL INFORMATION PROCESSING

One of the key challenges of cognitive neuroscience is 
to understand how cortical areas work together to accom-
plish complex cognition. Adding to this challenge is the 

fact that the form of the “working together” is constantly 
changing, as the system adaptively configures and recon-
figures itself in light of changing processing needs and 
inherent limitations on available computational resources. 
We propose that the following six operating principles 
govern this adaptive configuration capability: An initial 
principle captures the current consensus in the field.

0. Thinking is the product of the concurrent activity 
of multiple brain areas that collaborate in a large-
scale cortical network.

The next four principles, which constitute the theoretical 
core of our proposal, are relatively novel.

1. Each cortical area can perform multiple cognitive 
functions, and conversely, many cognitive func-
tions can be performed by more than one area.

2. Each cortical area has a limited capacity of com-
putational resources, constraining its activity.

3. The topology of a large-scale cortical network 
changes dynamically during cognition, adapting 
itself to the resource limitations of different corti-
cal areas and to the functional demands of the task 
at hand.

4. The communications infrastructure that supports 
collaborative processing is also subject to re-
source constraints, construed here as bandwidth 
limitations.

Finally, we propose a measurement assumption that en-
ables our theoretical constructs to make contact with neu-
roimaging data.

5. The activation of a cortical area, as measured by 
imaging techniques such as fMRI and PET, varies 
as a function of its cognitive workload.

In the remainder of this section, we describe the operating 
principles in greater detail and present examples of their 
operation.

0. Thinking is the product of the concurrent activ-
ity of multiple brain areas that collaborate in a large-
scale cortical network. The fact that multiple areas are 
involved in performing any task has been confirmed by 
thousands of neuroimaging studies. Part of the remain-
ing scientific challenge is to provide an account of why a 
particular set of cortical areas comes to be activated in a 
given task. Another part of the challenge is to characterize 
how the multiple areas do more than simply coactivate: 
They actively work together. For example, the functional 
connectivity between two areas, defined as the correlation 
or covariance between the time series of the activation of 
activated voxels in each, is commonly interpreted as in-
dexing the degree of coordination between them (Friston, 
1994; Horwitz, Rumsey, & Donohue, 1998). The degree 
of functional connectivity between two activated areas can 
be modulated by a number of variables, such as an in-
crease in working memory load (Diwadkar, Carpenter, & 
Just, 2000), an increase in task complexity (e.g., from pro-
cessing words to processing sentences; Homae, Yahata, 
& Sakai, 2003), or a decrease in communication band-
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width due to neurological conditions such as autism (Just, 
Cherkassky, Keller, & Minshew, 2004). Of course, like 
any correlation, functional connectivity does not indicate 
causality, leaving open the question of whether control is 
symmetric, asymmetric, or coordinated by a third area. 
The broad conclusion, however, is that complex cognition 
is a product of networks that span multiple cortical areas 
working together in close collaboration.

1. Each cortical area can perform multiple cogni-
tive functions, and conversely, many cognitive func-
tions can be performed by more than one area. This 
operating principle has two aspects. The first is that each 
area performs multiple functions. This multiplicity of func-
tional specializations is well established in the neuropsy-
chological literature—for instance, see Mesulam’s (1990) 
reference to Broca’s area as both the syntactic pole and the 
articulatory pole of processing. More recently, reviews of 
functional neuroimaging studies have shown that, over and 
over again, a given cortical area is activated in a number of 
different types of tasks (Cabeza & Nyberg, 1997, 2000). 
In particular, Duncan and Miller (2002) have proposed a 
multifunction view of prefrontal cortex, based in part on 
the findings of functional imaging studies. Cortical as-
signment for more than one function holds at even smaller 
spatial scales than typical imaging studies have afforded. 
At the spatial resolution allowed by BOLD fMRI in typi-
cal cognitive studies, individual voxels (volume elements 
typically of 30–50 mm3) are usually sensitive to multiple 
task variables. For example, in sentence comprehension, a 
fair proportion of the activating voxels in Wernicke’s area 
(left posterior superior temporal gyrus [STG]) respond to 
both lexical and syntactic manipulations (Keller, Carpen-
ter, & Just, 2001).1 The theory of multiple specializations is 
also compatible with seminal single-unit studies that have 
demonstrated that individual neurons are active during 
more than one function (Georgopoulos, Lurito, Petrides, 
Schwartz, & Massey, 1989; Nicolelis, 1997; Rao, Rainer, 
& Miller, 1997; Sanes & Donoghue, 1997). Sensory events 
and motor actions are coded as patterns of neural activity, 
akin to waves of activation, and therefore individual neu-
rons can participate in multiple codes.

The second, and more novel, aspect of this principle is 
that some functions are implemented by more than one 
area. We propose that there is some redundancy of function 
across cortical areas, such that some functions can be per-
formed by more than one brain area, although the nature of 
the implementations themselves can (and likely does) vary. 
This redundancy is revealed when focal damage to one 
cortical area results in the recruitment of another area to 
perform a similar function. For example, damage to areas 
involved in language processing, such as Broca’s area, 
sometimes leads to the activation of homologous right-
hemisphere areas soon after stroke (Thulborn, Carpenter, 
& Just, 1999). Such redundancy may generally be the basis 
of certain kinds of cortical plasticity. Redundancy of func-
tion is also observed in healthy brains, especially when 
a difficult task overwhelms the resource supplies (i.e., 
computational capabilities) of the canonical brain areas 
for the task. For example, when normal young adults pro-

cess sentences that are syntactically more complex, there 
is increasing activation of the right homologue of Broca’s 
area (Just, Carpenter, Keller, et al., 1996). These types of 
findings suggest an overlap of language functions between 
Broca’s area and its right homologue, with Broca’s area 
being primary (i.e., more efficient) for some tasks, such as 
syntactic analysis, and its right homologue being primary 
for others, such as prosodic processing.

2. Each cortical area has a limited capacity of com-
putational resources, constraining its activity. This 
operating principle is also relatively novel. Thinking is bi-
ological work, with an upper limit on resource availability. 
The finite resource capacities of various brain systems not 
only slow and degrade performance on difficult tasks, but 
also fundamentally shape cortical and cognitive informa-
tion processing, just as the shape of a riverbed constrains 
the water flow of a river. Resource constraints force the 
system to dynamically configure and reconfigure itself to 
adapt to limitations. In this role, resource constraints act 
not just as a stifling restriction on thinking, but also as a 
function that forces much of the adaptivity of human cog-
nition, a theme that will emerge throughout this article.

One imaging study that addressed capacity constraints 
by attempting to breach the cognitive system’s limit (Cal-
licott et al., 1999) used the N-back task to examine how 
increases in the number of items to be encoded, retained, 
and recalled affected the slope of the activation in several 
cortical areas. Prefrontal areas (which are associated with 
the working memory functioning required by this task) 
showed a monotonic increase in activation from N 5 0, to 
N 5 1, to N 5 2, as shown in Figure 1. (There was also a 
decrease from N 5 2 to N 5 3 in this area, as most par-
ticipants could no longer accurately perform the task and 
essentially gave up. Other areas showed different patterns, 
because their workloads did not necessarily increase in 
this way.) This is a familiar pattern of increasing activation 
in response to an increase in cognitive workload within 
some range, with acceptable performance accuracy.

3. The topology of a large-scale cortical network 
changes dynamically during cognition, adapting it-
self to the resource limitations of different cortical 
areas and to the functional demands of the task at 
hand. This novel operating principle is central to our pro-
posal. The composition of a large-scale cortical network 
and its pattern of inter-area connectivity are not static but 
can vary dynamically during task performance. This pro-
posal stands in contrast to the widespread conception that 
each cognitive task is performed by a fixed set of brain 
areas—a fixed neural substrate. According to the dynamic 
alternative we advocate, the “underlying neural substrate” 
is a moving target, changing not only from trial to trial 
(i.e., from stimulus item to stimulus item), but also from 
moment to moment within a trial.

This dynamic configuration and reconfiguration of a 
large-scale network is a response to the fluctuating avail-
ability of resources within brain areas and the chang-
ing functional demands of a task. The membership and 
connectivity of a network—its topology—first of all can 
change as the functional demands of a task increase quan-
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titatively, so that additional areas become active and are 
recruited into the network. For example, when a sentence 
comprehension task is made more difficult by progres-
sively increasing the structural complexity of the sentence, 
activation in the right-hemisphere homologue of Wer-
nicke’s area systematically increases from a negligible to 
a substantial level (Just, Carpenter, Keller, et al., 1996), as 
shown in Figure 2. We interpret this example of dynamic 
network reconfiguration as follows: When the resources 
of an area well-specialized for performing task-relevant 
functions (e.g., Wernicke’s area) are exhausted, additional 
areas that are less specialized for the same functions (e.g., 
its right homologue) are recruited into the network to ab-
sorb the excess workload. In addition, the topology of a 
network can change when the functional demands of per-
forming a task change qualitatively, as when an increase 
in difficulty requires strategic planning. For example, 
if a sentence comprehension task requires considerable 
problem solving in addition to language processing, it 
will dynamically activate and recruit left dorsolateral pre-
frontal cortex (DLPFC), an area associated with executive 
function and working memory, into the language network 
(Newman, Just, & Carpenter, 2002).

The dynamic entry of new cortical areas into a 
large-scale network is incremental and continuous, not 
 all-or-none. For example, in the Newman et al. (2002) 
study, left DLPFC activation in the difficult comprehen-
sion task occurred earlier or later, depending on where 
in the sentence the maximal reasoning load occurred. In 
this regard, dynamic cortical reconfiguration provides 
 just-in-time and as-needed neural support for the chang-
ing demands of task performance.

4. The communications infrastructure that sup-
ports collaborative processing is also subject to re-
source constraints, construed here as bandwidth 

limitations. This operating principle is perhaps the most 
novel of our proposals. In addition to the constraints on the 
activation observed in individual areas, there also appear 
to be constraints on the conjoint functioning of multiple 
activated cortical areas. These systemwide resource con-
straints are particularly manifest when participants perform 
two complex cognitive tasks concurrently. If there were no 
systemwide resource constraints, one would expect the ac-
tivation observed during dual-tasking to simply be the sum 
of the activations observed when performing each single 
task in isolation, or perhaps the activation could be slightly 
overadditive because of additional overhead (coordination) 
costs. However, when auditory sentence comprehension 
and mental rotation are performed concurrently, activation 
during  dual-tasking is far less than the sum of the activa-
tions when performing comprehension or rotation alone 
(Just, Carpenter, Keller, et al., 2001), as shown in Figure 3. 
This is consistent with the proposal here that some resource 
constraints apply to sets of cortical areas, complementing 
the constraints that hold within cortical areas. As described 
below, we interpret these interarea resource constraints as 
bandwidth limitations on the communications infrastruc-
ture that supports collaborative processing within the task-
specific large-scale networks (Just et al., 2004).

5. The activation of a cortical area, as measured 
by imaging techniques such as fMRI and PET, var-
ies as a function of its cognitive workload. The final 
operating principle is a measurement assumption. Cogni-
tion is biological work; this is the key to interpreting fMRI 
data. In fact, an alternative name that was once proposed 
for functional neuroimaging was “brain work imaging” 
(Haxby, Grady, Ungerleider, & Horwitz, 1991), a labeling 
of the measured property that we aim to make precise. In 
particular, cortical areas engage in order to perform neural 
computation, and this computation consumes biological 
resources. The capacity utilization of a cortical area is the 

Figure 1. Capacity constraints in a single area (left dorsolateral 
prefrontal cortex) in an N-back task, in which activation increases 
with workload up to a capacity limit (from Callicott et al., 1999). 
The seven curves represent the data from 7 subjects.
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Figure 2. Progressive activation of the right homologue of Wer-
nicke’s area (right superior temporal gyrus) as a function of sen-
tence complexity (from Just, Carpenter, Keller, et al., 1996).
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proportion of its resources currently being consumed, rela-
tive to its total supply. We claim that the capacity utilization 
of a cortical area is indexed by activation as measured by 
fMRI or PET. Capacity utilization is an instantaneous and 
dynamic property of a cortical area. It can be measured as 
the average activation over a relatively long period of time 
spanning several trials, as in studies that employ block de-
signs, or it can be measured multiple times during a single 
trial, as in event-related fMRI studies. Although the precise 
physiological mechanisms that couple neural computations 
with the fMRI BOLD response are currently unclear, most 
accounts ultimately rest on some bioenergetic principle re-
lated to resource consumption and regeneration (e.g., Logo-
thetis, 2003). Our reference to a specific biological pro-
cess is intentionally at a more molar level because, for our 
purposes, the capacity utilization of a cortical area can be 
conceptualized as the aggregate of many resource-bounded 
neurobiological mechanisms.

Neuroimaging studies that use graded designs generally 
find that, within some range of acceptable performance 
accuracy, activation in relevant areas increases mono-
tonically with the hypothesized computational demand 
imposed. This finding has been observed in a number of 
contexts: in word span tasks that vary the number of words 
to be stored and recalled (Grasby et al., 1994); in work-
ing memory N-back tasks that vary N (Braver, Cohen, 
Jonides, Smith, & Noll, 1997; Rypma, Prabhakaran, Des-
mond, Glover, & Gabrieli, 1999); in sentence compre-
hension tasks that vary the amount and nature of clause 
embedding (Just, Carpenter, Keller, et al., 1996; Röder, 
Stock, Neville, Bien, & Rösler, 2002); in mental rotation 
tasks that vary the rotation angle (Carpenter, Just, Keller, 
Eddy, & Thulborn, 1999; Just, Carpenter, Maguire, Di-
wadkar, & McMains, 2001); and in problem-solving tasks 
that vary the depth of search (Baker et al., 1996; Newman, 
Carpenter, Varma, & Just, 2003). Figure 4 shows how the 

volume and intensity of brain activation increase with the 
computational demand placed on one of the cortical areas 
central to performance of three different tasks—sentence 
comprehension, mental rotation, and Tower of London 
problem solving.

II. THE 4CAPS ARCHITECTURE

The operating principles introduced in the previous 
section have been embodied in a new cognitive neuro-
architecture, 4CAPS. Cognitive architectures are unified 
theories of cognition (Newell, 1990) that take the form of 
computational formalisms. As unified theories, they claim 
to support accounts of all forms of cognition. 4CAPS fo-
cuses in particular on complex forms of cognition such 
as language comprehension, problem solving, spatial 
reasoning, and dual-tasking. As computational formal-
isms, cognitive architectures claim to embody the basic 
 information-processing capabilities of the mind. That is, 
they define the available representational formats, the 
transformational operations on these representations, and 
control structures that organize the application of opera-
tions to representations over time. As a cognitive neuro-
architecture, 4CAPS makes the additional claim of ad-
mitting a plausible neural implementation. As we will see 
below, this neural implementation is not of the conventional 
sort: Its cognitive information-processing mechanisms 
are not directly reduced to neural  information-processing 
mechanisms. Rather, it supports a natural definition of 
resource utilization in brain areas that can be compared 
with functional neuroimaging measures.

4CAPS is the most recent member of an architectural 
family that includes CAPS (Thibadeau, Just, & Carpen-
ter, 1982) and 3CAPS (Just & Carpenter, 1992). These 
architectures have been the basis of models of behavioral 
performance in many domains: mental rotation (Just & 
Carpenter, 1985); analogical problem solving (Carpenter, 
Just, & Shell, 1990); discourse comprehension (Goldman 
& Varma, 1995; Thibadeau et al., 1982); human–computer 
interaction (Byrne & Bovair, 1997; Huguenard, Lerch, 
Junker, Patz, & Kass, 1997); Tower of Hanoi problem solv-
ing in normal subjects (Just, Carpenter, & Hemphill, 1996) 
and in patients with frontal lobe lesions (Goel, Pullara, & 
Grafman, 2001); and sentence comprehension in normal 
readers (Just & Carpenter, 1992) and in aphasic readers 
(Haarmann, Just, & Carpenter, 1997). 4CAPS inherits 
many of the computational mechanisms of its predeces-
sors, and thus their ability to account for the behavioral 
data (response times and error rates) on complex cognition; 
in this sense, it is a cognitive architecture. The new feature 
of 4CAPS is that it relates cognitive information to corti-
cal information processing by instantiating the operating 
principles described above. As a result, 4CAPS models can 
also account for the neuroimaging data on complex cogni-
tion. In this sense, it is a cognitive neuroarchitecture.

Below, we describe 4CAPS, focusing on how it realizes 
the operating principles, and in particular on how it incor-
porates resource constraints on information processing. The 
details of the computational mechanisms it inherits from 

Figure 3. Activation in two areas during a language task and 
during a spatial task, predicted dual-task activation under the 
assumption of additivity, and the observed dual-task activation 
(from Just, Carpenter, Keller, et al., 2001).

0

20

40

60

80

Single Task,
Sentence

Single Task,
Rotation

Dual Tasks
(Additivity
Prediction)

Dual Tasks
(Observed)

N
u

m
b

er
 o

f A
ct

iv
at

ed
 V

o
xe

ls
 

Temporal

Parietal



158    Just and Varma

CAPS and 3CAPS are available in articles on those archi-
tectures (Just & Carpenter, 1987, 1992; Just & Varma, 2002; 
Thibadeau et al., 1982). The details of 4CAPS and of the 
particular models described in subsequent sections are avail-
able at the 4CAPS Web site, www.ccbi.cmu.edu/4CAPS, 
which provides both documentation and source code.

A 4CAPS model consists of a set of centers intended to 
correspond to cortical areas that activate in a given task. 
Each center is a hybrid symbolic/connectionist system with 
a resource supply of fixed capacity. Centers are symbolic 
in that they are production systems. Declarative knowledge 
is represented by declarative memory elements, each pos-
sessing a number of attributes (or features), and each attri-
bute has a symbolic or numeric value. Procedural knowl-
edge is encoded by condition–action production rules. The 
condition aspect of a production rule specifies the enabling 
conditions (a pattern of declarative elements whose attri-
bute values satisfy the specified constraints) for the rule to 
match. The action aspect is an action to be taken when the 
production rule matches and the production fires. (Actions 
are described below.) The characteristic ability of produc-
tion systems to model high-level cognition derives from 
their ability to bind variables that relate declarative ele-
ments to one another, which allows them to transparently 
process constituent-structured (i.e., embedded) representa-
tions (Fodor & Pylyshyn, 1988).

4CAPS models also have connectionist properties: 
They make use of activation-based representations, graded 
processing, and parallel control. Broadly speaking, there 

is a family resemblance between 4CAPS models and lo-
calist connectionist networks, with declarative elements 
functioning as units, productions as weighted links, and 
activation propagating in parallel. Specifically, each de-
clarative element has an associated activation level that is 
a continuous variable. (The term activation is used in this 
paragraph to refer to the current availability of a represen-
tation, as in Collins & Quillian, 1969. The word also refers 
to brain activation as measured by fMRI or PET. The rela-
tion between the two meanings is described below.) The 
activation of a declarative element is a vector, not a scalar. 
There is a vector component corresponding to each center, 
with the value indicating the current activation contribu-
tion of that center to that element. (By convention, “the” 
activation of a declarative element refers to the sum of its 
component values—i.e., the activations contributed by the 
centers that are collaboratively processing it.) The pro-
ductions in 4CAPS have some connectionist properties. 
Declarative elements must not only satisfy the symbolic 
constraints of condition sides; their activation levels must 
also exceed the specified thresholds. The primary action 
that a production executes is also graded—directing acti-
vation from one declarative element to another, modulo 
some continuous weight. Productions are also graded in 
time: They do not complete their processing all at once, 
but rather direct activation reiteratively over an interval of 
time.2 Another connectionist property of 4CAPS is its par-
allel control scheme: At each point in time, called a cycle, 
all productions whose condition aspects are satisfied are 

Figure 4. Modulation of activation in left-hemisphere areas as a function of (A) sentence complexity (from Just, Carpenter, 
Keller, et al., 1996), (B) angular disparity in mental rotation (from Carpenter et al., 1999), and (C) problem difficulty (i.e., number 
of moves required for solution) in the Tower of London task (from Newman et al., 2003).
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fired in parallel. This is true both within individual centers 
and across all centers. In summary, each 4CAPS center 
combines the strengths of a production system (symbolic 
variable-binding and processing of structured representa-
tions) with the graded, activation-based, and parallel op-
eration of a connectionist network.

0. Thinking is the product of the concurrent ac-
tivity of multiple centers that collaborate in a large-
scale cortical network. The first operating principle is 
that the cognitive system, which appears unitary at the psy-
chological level, is composed at the cortical level of mul-
tiple information-processing centers. Centers in 4CAPS 
are intended to correspond approximately to the cortical 
epicenters that compose large-scale distributed cortical 
networks, as proposed by Mesulam (2000). (The types of 
computations we focus on are performed in the cortex and 
are manifested as cortical activation measured by fMRI. It 
is very likely that subcortical structures also play a role in 
the forms of cognition we address, and it is also possible 
that some subcortical centers are governed by the same 
operating principles as cortical centers. However, this is 
outside the scope of the research and theory described 
here.) Each 4CAPS center maps to a cortical area that has 
demonstrated a cluster of activation over a range of cogni-
tive tasks. For example, one center might correspond to 
 Broca’s area. 4CAPS does not stipulate a privileged spatial 
scale at which to decompose functionally coherent brain 
areas into centers. On the basis of clusters of activation 
observed in cognitive tasks, one could say that there are ap-
proximately 10–20 possible cortical centers of activity per 
hemisphere, or 20–40 centers overall. But some of these 
clusters could be further decomposed into functionally and 
spatially distinct microcenters, and some clusters of activa-
tion that adjoin each other and respond to similar variables 
could be combined into a single larger center. For example, 
Broca’s area is sometimes treated as a single area, and at 
other times it is usefully partitioned into pars opercularis 
and pars triangularis. The preference for one treatment or 
the other is a matter of decomposing or aggregating to a 
useful cognitive scale. We assume decomposition along 
these lines into M centers.

Each center can perform a set of cognitive functions. 
An example of a cognitive function is the parsing (rec-
ognition) of a noun phrase. A cognitive function is im-
plemented by a set of declarative elements and produc-
tions. Returning to the previous example, the declarative 
elements would represent phrase markers according to a 
particular linguistic theory (e.g., X-bar theory), and the 
productions would parse these representations according 
to a particular algorithm (e.g., bottom up). Whenever pos-
sible, we describe 4CAPS models at the abstract level of 
cognitive functions and bypass the details of the declara-
tive elements and productions that implement them. This 
is in keeping with the focus of this article on the operating 
principles that shape large-scale networks.3

For the most part, we attribute functions to centers in a 
way that is consistent with the consensus view (e.g., that 
Broca’s area is specialized for language). However, we 
add the notion that what unifies the cognitive functions 

performed by a center is not their task domain, but their 
processing style. Processing style refers to the qualities of 
representations and of the operations that transform them. 
For example, whereas Broca’s area (particularly pars oper-
cularis) is typically construed as being involved in syntactic 
and articulatory processing, we construe it as constructing 
and selectively accessing structured (i.e., sequential and 
hierarchical) representations. This more general charac-
terization of its processing style and cognitive functions 
is more consistent with the range of tasks for which it 
activates—for example, for the apprehension of musical 
rhythm as well as of language (Koelsch et al., 2002).

Centers collaborate by processing (i.e., contributing to 
the activations of) common declarative elements. In prac-
tice, two patterns of collaboration occur frequently. In the 
first pattern, centers act as peers (co-routines), recipro-
cally generating partial products that are exchanged back 
and forth and articulated into task outputs. We will see this 
in the model of sentence comprehension described below, 
in which centers corresponding to Wernicke’s and Broca’s 
areas collaborate intensely at all representational levels. 
In the second pattern, centers interact hierarchically, with 
one center implicitly supervising others. We will see this 
below in the model of spatial problem solving, in which 
a center corresponding to right DLPFC in some cases es-
tablishes goals for other centers (corresponding to more 
posterior brain areas) to pursue. In both instances, the 
locus of collaboration is the same: shared declarative 
elements whose activation vectors are contributed to by 
multiple centers.

1. Each center can perform multiple cognitive func-
tions, and conversely, some cognitive functions can 
be performed by more than one center. The multiple 
cognitive functions that can be performed by each center 
have in common a similar information-processing style. For 
example, a center corresponding to the intraparietal sulcus 
(IPS) might be specialized for functions that are spatial and 
transformational in nature—such as rotation, translation, 
and scaling—and more generally for performing geometric 
computations. And although a center may have the capabil-
ity of performing multiple cognitive functions, it is typi-
cally differentially specialized for the multiple functions 
that it can perform. In this context, specialization refers to 
efficiency of resource usage. More precisely, the specializa-
tion of center i for cognitive function j is denoted Sij, where 
Sij ∈ [1, ). Perfect specialization is indicated by a value of 
1.0, such that performing one unit of the cognitive func-
tion requires 1.0 units of the center’s activation resources. 
Larger values indicate lesser specializations; for instance, 
a specialization of 2.0 means that performing one unit of a 
cognitive function requires 2.0 units of a center’s activation 
resources. In the limit, a specialization of  represents an 
inability to perform a cognitive function (because each cen-
ter has a finite resource supply, as described below). If there 
are N cognitive functions, the total resource consumption of 
center i at a particular point in time is

 A Sij ij
j

N

,
1
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where Aij represents the amount of cognitive function j 
performed by center i.

Conversely, some cognitive functions can be performed 
by more than one center, since we claim that there is some 
genuine redundancy or overlap in the system. The canoni-
cal example is that some pairs of contralateral homolo-
gous areas appear capable of performing the same cogni-
tive functions, such that if one is damaged the other can 
be recruited in its place. (We will return to this below in a 
model of sentence comprehension.) Different centers that 
can perform the same function typically differ in their rela-
tive specializations for the function. In other words, there 
is a rank order of the efficiency with which the function is 
performed across centers implicit in the Sij. The canonical 
assignment of the function is determined by these relative 
specializations, so that, resources permitting, the function 
will be assigned to the center most specialized for, and 
thus most efficient at, performing it (i.e., Sij is minimal). 
(However, centers have finite resource supplies that intro-
duce dynamic, second-order influences on assignment, as 
described below.) The more specialized a center is for a 
given cognitive function, the fewer resources it requires 
to perform the function, and thus the lower its capacity 
utilization. This is consistent with the frequent finding that 
people with higher skill levels tend to exhibit lower activa-
tion levels (Büchel, Coull, & Friston, 1999; Just, Carpen-
ter, & Miyake, 2003; Reichle, Carpenter, & Just, 2000).

This proposal is not modular or localist because there 
does not exist an isomorphism between centers and cogni-
tive functions. Nor is it a form of equipotentiality, because 
not every center can perform every cognitive function. 
Rather, each center can typically perform multiple cogni-
tive functions, and some cognitive functions can be per-
formed by more than one center; the choice of which center 
performs a particular cognitive function is, to a first-order 
approximation, a matter of relative specialization.

2. Each center has a limited capacity of computa-
tional resources, constraining its activity. Computation 
is fueled by activation. Declarative elements must possess 
above-threshold activation to match the condition aspects 
of productions, and fired productions direct activation to 
declarative elements. Each center possesses a finite supply 
of activation, reflecting the fact that all biological systems 
are subject to a limit on resource availability. Specifically, 
the resource capacity of center i is denoted Ci, and the 
following constraint on resource consumption is enforced 
at all times:

 A S Cij ij i
j

N

.
1

 (1)

Resource limitations have an impact when a difficult task 
is being performed and resource demands exceed the re-
source supplies available at the well-specialized centers. 
Conceptually speaking, two adaptations are possible. 
The first is that excess cognitive functions can spill over 
from centers experiencing resource shortfalls to centers 
with overlapping functional specializations that have 
resources available. The dynamic spillover of cognitive 
functions is a unique feature of 4CAPS and is described 
in detail below. The second adaptation to resource short-

falls, first implemented in 3CAPS (Just & Carpenter, 
1992), is to deallocate activation from declarative ele-
ments associated with completed cognitive functions and 
to reallocate this activation to cognitive functions expe-
riencing shortfalls. For example, if a resource shortfall 
is experienced while processing a sentence of a text, ac-
tivation can be deallocated from representations of the 
surface structures of prior sentences. One consequence 
is the gradual  forgetting-by-displacement of previously 
activated declarative elements by more recently acti-
vated declarative elements. Both adaptations—spillover 
of excess workload and deallocation/reallocation—are 
consequences of the same resource allocation algorithm, 
described below.

3. The assignment of functions to centers changes 
dynamically, adapting to resource availability and to 
the functional demands of the task. The topology of a 
large-scale network is not fixed, but instead changes dy-
namically during task performance. From the perspective 
of an individual center, two factors determine the degree 
to which it participates in the network. The first factor is 
the match between the cognitive functions to be performed 
and the center’s specializations for those functions: Is the 
center relatively well specialized for some of the pend-
ing functions? The second factor is resource availability: 
Does the center possess spare resources for fueling ex-
ecution of the pending functions for which it is well spe-
cialized? 4CAPS incorporates an algorithm for weighing 
these factors, assigning pending cognitive functions to 
centers on the basis of a joint consideration of functional 
specializations and resource availability. The assignment 
guarantees that the large-scale network performs as much 
of each function as possible while respecting all resource 
constraints. The degree to which a center participates in 
the network is the indirect result of this assignment.

4CAPS maps the assignment of cognitive functions to 
centers onto a linear programming problem and solves it 
using the simplex algorithm, a standard technique in opera-
tions research (Cormen, Leiserson, Rivest, & Stein, 2001; 
Dantzig & Thapa, 1997). The canonical linear program-
ming problem is to assign a set of manufacturing tasks 
(e.g., the production of widgets of various types) to a set of 
manufacturing sites (e.g., factories or machines). Manufac-
turing sites vary in the relative efficiencies with which they 
produce the various types of widgets and in their overall 
production capacities. The objective is to allocate produc-
tion resources with maximal economic efficiency—that is, 
in a way that minimizes costs and thus maximizes profit 
earned from widget production. The widgets to be manu-
factured correspond in 4CAPS to the cognitive functions 
to be performed, and the manufacturing sites correspond 
to centers. The objective is to assign cognitive functions 
to centers in a way that maximizes cognitive throughput 
while minimizing resource consumption.

More formally, at each point during task performance, 
some mixture of the N cognitive functions must be per-
formed. We denote the activation requested for cognitive 
function j as Rj. The goal is to assign the N cognitive func-
tions to the M centers. Recall that Aij denotes the amount 
of cognitive function j performed by center i; these are 



CortiCal neuroarChiteCture of Cognition    161

the values to be determined in solving the assignment 
problem. The assignment is constrained in two ways. M 
constraints, one for each center, take the form of Equa-
tion 1 above. Each states that a center can supply no more 
activation than its capacity. Another N constraints, one for 
each cognitive function j, take the following form:

 A Rij j
i

M

.
1

 (2)

Each constraint states that the amount of cognitive function 
j performed across all centers must be as close as possible 
to (but no more than) the requested amount Rj. Solving 
the assignment problem requires finding values for Aij that 
satisfy the constraints from Equations 1 and 2. (The as-
signment problem actually contains a third constraint as 
well, described below.) Because many assignments satisfy 
the constraints (e.g., Aij 5 0 for all i and j), we require a 
measure of the goodness of an assignment to be able to 
choose the “best” one. In linear programming, this mea-
sure is called the objective function, and it takes the form of 
a linear combination of the Aij values to be maximized,

 W Aij ij
j

N

i

M

11

.  (3)

The only remaining problem is how to choose Wij. Re-
call that all other things being equal, we prefer to assign the 
cognitive function j to the center i with the highest relative 
specialization—that is, whose Sij is minimal. (This center 
corresponds to the canonical cortical area for performing 
the function.) This preference can be encoded in the objec-
tive function by defining the weights as Wij :5 1/Sij.

To review, at each point in time, 4CAPS faces the 
problem of assigning pending cognitive functions to cen-
ters. It recasts this as a linear programming problem and 
solves it using the simplex algorithm. The result is an 
assignment of cognitive functions to centers (i.e., values 
for Aij) that (1) respects the capacity constraints of each 
center; (2) performs as much of each cognitive function 
as possible; and (3) all other things being equal, assigns 
cognitive functions to those centers most specialized for 
them. These constraints determine the initial topology 
of the large-scale network recruited to perform a task 
and, more interestingly, its dynamic evolution over time 
in response to changing resource availability and func-
tional demands. Although these dynamics are complex, 
four cases occur again and again in the models described 
in subsequent sections, and therefore warrant special 
consideration.

A. When a task of low difficulty is being performed, the 
cognitive functions to be executed are unlikely to exhaust 
the resources of the centers most specialized for them. 
These centers (and just these centers) will be recruited to 
form the canonical (or default) large-scale network for the 
task. In this case, the assignment of cognitive functions 
to centers is driven solely by first-order considerations—
namely, the relative specializations of different centers. 
For example, assume two centers with equal resource 
supplies (C1 5 C2 5 6) in which the first center is more 

specialized for a lone cognitive function than is the second 
center (S11 5 1 and S21 5 2). Furthermore, assume that 
the resource demand is relatively light (e.g., R1 5 3). This 
defines the following linear programming problem:

maximize: A11 1 1
2 A21 (objective function)

subject to: A11 # 6 (first center)

 2A21 # 6 (second center)

 A11 1 A21 # 3 (cognitive function)

 A11, A21 $ 0 (default linear pro-
  gramming constraints),

depicted in Figure 5A. The constraints are shown as dashed 
lines. They demarcate the boundaries of the shaded feasi-
bility region—the set of assignments (A11, A21) that satisfy 
the constraints. The simplex algorithm effectively posi-
tions the objective function line, shown as a solid line, 
so that it touches a vertex of the feasibility region. This 
vertex represents values of A11 and A21 that maximize the 
objective function. When the resource demands of the cog-
nitive function are relatively light, the objective function 
line touches (i.e., is maximized) at a vertex that assigns 
the cognitive function entirely to the well-specialized first 
center (i.e., A11 5 3 and A21 5 0). A huge proportion of 
fMRI studies of cognition in normal participants corre-
spond to this case.

B. As task difficulty increases from low to moderate, 
the maintenance and processing of representations con-
sumes an increasing amount of resources. Over this range, 
4CAPS predicts increasing activation in well- specialized 
centers. Returning to the example, as the resource de-
mand of the cognitive function (R1) increases from 4 
to 5 to 6 units of activation, the shape of the feasibility 
region changes, and consequently so does the vertex at 
which the objective function is maximized. This is shown 
in Figure 5B. However, the well-specialized first center 
continues to possess a resource supply sufficient to sat-
isfy the increasing resource demands, and continues to be 
assigned all of the cognitive function (i.e., A21 5 0). This 
case arises in “graded” fMRI studies that quantitatively 
vary the cognitive workload or task difficulty.

C. Next, consider the case in which a task is difficult. 
For example, when the resource demand of the cognitive 
function (R1) is 7 units of activation, the feasibility region 
changes shape yet again, as shown in Figure 5C. The vertex 
where the objective function is now maximized represents 
an assignment of 6 units of the cognitive function to the 
well-specialized first center and 1 unit to the less- specialized 
second center. In other words, resource demands now ex-
ceed the resource supply of the first center, saturating it 
and causing the spillover of excess resource demands to the 
second center. The second center is recruited into the large-
scale network, which changes its topology to a noncanoni-
cal form. When resource demands decrease following some 
peak, resources will become available in well-specialized 
centers, and previously overflowing cognitive functions 
will return to them. This corresponds to a transition from 
the feasibility region depicted in Figure 5C back to those 
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depicted in 5B. This case corresponds to some fMRI stud-
ies of performance in normal participants doing extremely 
difficult tasks that they can still perform accurately, and 
to globally compromised systems, such as Alzheimer’s pa-
tients who can still perform a simpler task accurately.

D. The fourth case concerns compromise of a single 
center. Focal lesions to cortical areas are simulated by 
drastically reducing the resources available in the corre-
sponding model center. This increases the likelihood of 
spillover. For example, if the resource supply of the first 
center is reduced from 6 units of activation to 2 units, then 
even light resource demands (R1 5 3) will require recruit-
ment of the less-specialized second center to help perform 
the cognitive function. This is shown in Figure 5D. This 
stands in contrast to the case depicted in Figure 5A, where 
the same light resource demands on the intact model are 
entirely satisfied by the first center, and therefore do not 
require recruitment of the second center.

Two types of intercenter interaction have been described 
above, and the distinction between them merits comment. 
The first is the straightforward collaboration referred to 
by Principle 0 and described earlier, in which the collabo-
rating centers interact either as peers or hierarchically. The 
locus of collaboration in this case is the shared declara-
tive elements whose activation vectors are contributed to 
by the multiple centers. In this form of interaction, the 
two collaborating centers are both drawn into the process-
ing because the different cognitive functions that they 
are capable of performing are both needed. The second 
form of center interaction is the spillover of some of the 
processing from a more-specialized to a less-specialized 
center when the more-specialized center is running out 
of resources (an instance of dynamic change in network 
topology mandated by resource limitations, referred to by 
Principle 3). In this form of intercenter interaction, the 
second center is drawn into the processing because it is 
capable of performing types of cognitive functions similar 
to those of the first center. What both types of interaction 
have in common is that the representations being operated 
on by two centers are shared between the centers.

4. The communications infrastructure that sup-
ports collaborative processing is also subject to re-
source constraints, construed here as bandwidth 
limitations. In addition to limitations on the resource 
consumption of individual centers, there are also limita-
tions on the joint activity of groups of centers. We term 
the former intracenter constraints and the latter intercen-
ter constraints. An intercenter constraint makes resource 
availability in one center subject to resource consumption 
in other centers. Below, we develop a formally unified ac-
count of intracenter and intercenter resource constraints, 
although we acknowledge that the underlying biological 
mechanisms are likely to be quite different. We also offer 
an interpretation of intercenter constraints as bandwidth 
limitations on the communications infrastructure over 
which centers/areas collaborate.

Intercenter constraints are motivated by a number of 
empirical findings. Of particular importance are studies 
of dual-tasking that employ complex component tasks that 

Figure 5. Graphical interpretation of the linear programming 
assignment problem. (A) When resource demands are low, the 
cognitive function is entirely assigned to the well-specialized 
first center. (B) As resource demands increase, the first center is 
increasingly recruited. (C) When resource demands exceed the 
resource supply of the first center, processing spills over to the 
less-specialized second center, which has now been recruited into 
the large-scale network. (D) When the resource supply of the first 
center is drastically reduced following damage to the correspond-
ing brain area, spillover occurs earlier.
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are implemented by two largely separate large-scale net-
works. A common finding is that the activation observed 
when performing two such tasks concurrently is less than 
the sum of the activations observed when performing them 
in isolation (see, e.g., Just, Carpenter, Keller, et al., 2001, 
depicted in Figure 3). Below, we describe a 4CAPS model 
that can account for this finding only if it is augmented 
with intercenter resource constraints, demonstrating their 
necessity. Here, the focus is on how intercenter resource 
constraints are incorporated into the assignment problem.

The number of intercenter resource constraints that op-
erate in the brain and the membership of each (i.e., the 
centers they conjoin) are open questions. For simplicity 
of exposition, we assume a single intercenter constraint 
on the resources available to all centers. (This assump-
tion is refined in a subsequent section with respect to the 
dual-task data.) This cortexwide intercenter constraint is 
expressed as

 A S Cij ij
j

N

i

M
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∑∑ CORTEX.
11

 (4)

It states that the joint resource consumption of all M cen-
ters as they execute all N cognitive functions is bound 
by CCORTEX. (More generally, if there are P groups of 
centers, each governed by an intercenter resource con-
straint, then P such constraints must be formulated.) The 
complete assignment problem, then, is defined by Equa-
tions 1 (intracenter resource constraints), 4 (intercenter 
resource constraints), 2 (functional resource demands), 
and 3 (the objective function). 4CAPS solves this problem 
at each point in time (i.e., during each cycle). At one level 
of analysis, the result is an allocation of intracenter and 
intercenter resources for the execution of pending cogni-
tive functions. At another, coarser level of analysis, the 
result defines the topology of the large-scale network on a 
moment-by-moment basis.

5. The activation of a cortical area, as measured by 
imaging techniques such as fMRI and PET, varies as 
a function of its cognitive workload. The characteriza-
tion of resource consumption developed above permits a 
more formal definition of cognitive workload in terms of 
capacity utilization, which is the entity that brain activation 
indexes. The capacity utilization of a center is the propor-
tion of its resource supply being consumed at a point in 
time:

 CU
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The critical measurement assumption of 4CAPS is that the 
capacity utilization of a center indexes neural computation 
in the corresponding cortical area. This assumption will 
be tested below by considering for a number of models 
whether the capacity utilizations of their centers account 
for the activations (as measured by fMRI or PET) in the 
corresponding cortical areas.

Capacity utilization as defined by Equation 5 is an in-
stantaneous measure. It can be averaged over intervals of 
time spanning multiple trials to account for the results of 

neuroimaging experiments that employ block designs, in 
which multiple trials of the same type are performed in 
succession.

Capacity utilization can also be used to account for 
 moment-by-moment fluctuations in brain activation dur-
ing the performance of a single trial, as measured by ex-
periments that employ event-related designs. This requires 
explicitly accounting for the temporal relation between 
neural computation, which is effectively instantaneous at 
the time scale at which 4CAPS operates, and the associated 
hemodynamic response measured by fMRI, which is de-
layed and distributed in time. The hemodynamic response 
is accounted for in a straightforward manner. First, a capac-
ity utilization time series CUi(t) is acquired for each center 
i by sampling at the same frequency that images are ac-
quired in the event-related study being modeled (e.g., one 
every 1.5 sec). Second, the capacity utilization time series 
is convolved with a hemodynamic response function h(t) 
to generate a predicted activation time series fMRIi(t).

 fMRI t CU x h t xi i
x

t

( ) ( ) ( ).= −
=
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 (6)

Other researchers have established that the hemodynamic 
response function is well approximated by a gamma func-
tion with a fixed delay δ (Aguirre, Zarahn, & D’Esposito, 
1998; Boynton, Engel, Glover, & Heeger, 1996).
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(7)
We adopt this approximation, as well as published param-
eter estimates (δ 5 2.5, τ 5 1.25, n 5 3). The predicted 
activation time series of a center can be compared with 
the activation time series observed in the corresponding 
cortical area.

Modeling strategy. The operating principles embod-
ied in the 4CAPS cognitive neuroarchitecture are evalu-
ated below in models of sentence comprehension, Tower 
of London problem solving, mental rotation, and complex 
dual-tasking. Space limitations make it impossible to de-
scribe each model in sufficient detail to permit independent 
reconstruction. Readers interested in this level of descrip-
tion are referred to the 4CAPS Web site for documenta-
tion and source code for all models. It is also impossible to 
completely evaluate each model here. Readers interested 
in assessments against both behavioral and brain imaging 
data that have been collected from both normal and spe-
cial populations; in formal sensitivity analyses that identify 
the mechanisms that bear the explanatory weights; and in 
comparisons against competing models of the same do-
main are referred to the articles devoted to the individual 
models. Although we pay some attention to the details of 
our models, their correspondence to the data, and their re-
lation to the competing accounts, the focus here is on how 
the models exemplify the operational principles embodied 
in 4CAPS, and in particular on their dynamic response to 
changing resource availability and functional demands.

The models are primarily evaluated by comparing the 
capacity utilizations of their centers with the activations 
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of the corresponding brain areas. A number of measures 
of brain activation are considered. The first measure, 
the number of voxels activated above a fixed threshold 
in various conditions, is volumetric. The second way in 
which brain activation is quantified is by intensity, or 
more precisely, the percent change in signal intensity in 
an experimental condition relative to a baseline fixation 
condition, usually for the voxels that activate above some 
fixed threshold in some specified region of interest. The 
third measure, the sum of the activation changes in the 
activated voxels, combines volumetric and intensity in-
formation. No one measure is privileged; the models are 
evaluated against whichever measures are reported by the 
studies being addressed. The use of multiple measures can 
be justified for two reasons. First, because the measures 
are at least monotonically related to one another, their dif-
ferences can be glossed over without excessive loss of ac-
curacy. Second, and more importantly, our goal is not to 
develop neurobiological microtheories of the measures 
(linking neural computation to different transformations 
of the BOLD signal), so that 4CAPS models could make 
absolute predictions. Rather, we aim to account for the 
relative activations of brain areas across a number of con-
ditions that vary on task variables such as difficulty. For 
this reason, we are content to compare capacity utiliza-
tions with different measures of brain activation using 
correlations. This hides the differences between the mea-
sures in silent intercept terms. Modeling these differences 
is left as a topic for future research. (For an example of a 
modeling framework that supports absolute predictions of 
fMRI measures, see Husain, Tagamets, Fromm, Braun, & 
Horwitz [2004].)

The major free parameters of 4CAPS models—and 
the only ones estimated in the data fits reported below—
are intracenter resource capacities and, when applicable, 
intercenter resource capacities. The parameter estimates 
used to fit each model to each data set and the data sets 
themselves are available at the 4CAPS Web site (www 
.ccbi.cmu.edu/4CAPS).

III. A 4CAPS MODEL OF SENTENCE 
COMPREHENSION

This section illustrates the operating principles em-
bodied in 4CAPS in the context of a model of sentence 
comprehension. The model’s ability to perform sentence 
comprehension and account for behavioral performance 
is inherited from successful CAPS and 3CAPS models 
of this domain (Just & Carpenter, 1987, 1992; Thibadeau 
et al., 1982) and other contemporary psycholinguistic ac-
counts. The proposals concerning the neural distribution 
of cognitive function are relatively novel. The model is 
also evaluated by comparing the capacity utilizations of its 
centers with the activations of the corresponding cortical 
areas. The focus is on how the topology of the language 
network changes dynamically with resource availability 
and with the functional demands of sentence comprehen-
sion. The details of the model’s implementation and its re-
lation to a broader range of data (and competing accounts 

of these data) are provided in Varma and Just (2007) and 
the 4CAPS Web site.

Sketch of a Theory of Sentence Comprehension
Sentence comprehension is defined as a mapping from 

a sequence of word percepts, the inputs, to a thematic 
representation of meaning (indicating who did what to 
whom), the outputs. (The perceptual processes that yield 
word percepts and the discourse processes that integrate 
thematic representations across sentences are outside the 
scope of the sentence comprehension model.) This map-
ping is actually a composition of mappings linked by in-
termediate representational levels: lexical, syntactic, and 
thematic. The representations are of a conventional sort. 
Lexical representations are sets of feature values that en-
code aspects of word meaning such as grammatical class 
(used to construct syntactic representations) and animacy 
(used to construct thematic representations). Other types 
of semantic features of words (such as perceptual, motor, 
or functional properties of the physical objects to which 
concrete nouns refer) are not yet represented in the model. 
Syntactic representations conform to the X-bar formal-
ism (Chomsky, 1970) adopted by many psycholinguis-
tic models. Thematic representations follow the familiar 
 case–role scheme first introduced by Fillmore (1968). 
The composite mappings and intermediate representa-
tional levels are governed by a number of theoretical te-
nets shared with many contemporary behavioral models: 
Processing is (1) parallel, in that representations within 
and across levels are constructed simultaneously; (2) im-
mediate, in that strategic choices are not postponed indefi-
nitely; and (3) resource constrained, in that the number of 
representations that can be simultaneously maintained and 
processed is limited (Gibson, 1998; Jurafsky, 1996; Just & 
Carpenter, 1992; Kintsch, 1998; Lewis, 1993; Smolensky, 
1999; Thibadeau et al., 1982; Vosse & Kempen, 2000).

There is a tendency for theories of sentence compre-
hension to adopt the functional carving of language of-
fered by linguistic decompositions and to map linguistic 
functions (such as syntactic analysis) to cortical areas in a 
one-to-one manner. By contrast, the operating principles 
embodied in 4CAPS suggest that (1) each cortical area 
performs functions that typify its processing style and 
that can apply to multiple linguistic functions, and (2) a 
linguistic function that appears unitary at the behavioral 
level can be implemented by a network of collaborating 
brain areas. We therefore emphasize the multiple over-
lapping and complementary functional specializations 
of the core components of the language network: Wer-
nicke’s area, Broca’s area, and their right-hemisphere ho-
mologues. (Of course, other brain areas also contribute to 
sentence comprehension, but these are beyond the scope 
of the model.) We also emphasize the patterns by which 
these areas collaborate.

Specifically, we propose that one form of collaborative 
processing occurs between Wernicke’s and Broca’s areas, 
which combine to retrieve and structure language repre-
sentations at all levels. Specifically, we hypothesize that 
Wernicke’s area is specialized for the associative retrieval/
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design function. Existing representations serve as cues 
for the retrieval of language-based associations—that is, 
of prior knowledge, whether declarative or procedural. 
Wernicke’s area collects these associations along with per-
ceptual inputs and existing representations into designs 
(or blueprints) for new language representations. We hy-
pothesize that Broca’s area is specialized for the structure-
building function. It uses the association-based designs 
activated by Wernicke’s area to manufacture new struc-
tured representations (or constituent structures). These 
representations are notable because they possess internal 
structure—that is, sequentially or hierarchically embed-
ded constituents organized by named relations. More gen-
erally, Broca’s area is postulated to construct structured 
representations not only for the syntactic analysis of lan-
guage, but also for other levels of language and for other 
types of tasks requiring such representations, such as the 
processing of musical rhythm (Koelsch et al., 2002).

The associative retrieval/design and structure-building 
functions attributed to Wernicke’s and Broca’s areas, re-
spectively, are applied at various levels: to word percepts, 
to produce lexical designs and then lexical feature constit-
uents; to lexical features, to produce syntactic designs and 
then syntactic constituents; to subordinate syntactic con-
stituents, to produce syntactic designs and then superordi-
nate syntactic constituents; and to superordinate syntactic 
constituents, to produce thematic designs and then thematic 
constituents. In short, the complementary functional spe-
cializations of Wernicke’s and Broca’s areas require them 
to collaborate at all levels of sentence comprehension. The 
attribution of an associative retrieval/design function to 
Wernicke’s area and a structuring function to Broca’s area 
represents a break from the dominant linguistic carving of 
language. However, these attributions are consistent with 
older linguistic and neuropsychological traditions (Jakob-
son, 1971; Luria, 1981). They also resonate with the com-
mon finding that manipulating a single linguistic variable 
(such as syntactic difficulty or lexical difficulty) modulates 
activation in both areas (see, e.g., Keller et al., 2001)—a 
pattern recognized in recent reviews of the neuroimaging 
literature on language processing (e.g., Bookheimer, 2002; 
Friederici, 2002; Kaan & Swaab, 2002).

Another form of collaborative processing is more 
dynamic in nature, occurring when a cortical area most 
specialized for a required cognitive function lacks the re-
sources to perform it. When this happens, a cortical area 
with a secondary specialization for the cognitive function 
and having adequate resources will be recruited into the 
large-scale network to perform the excess processing. 
This form of collaborative processing occurs frequently 
in the language network. Specifically, we hypothesize that 
the right-hemisphere homologues of Wernicke’s and Bro-
ca’s areas have secondary specializations for the retrieval/
design and structuring functions, respectively. When the 
resources of a well-specialized left-hemisphere area are 
exhausted, processing spills over to its right homologue, 
which is recruited into the language network. This can 
happen because a sentence is especially difficult, in which 
case the right homologue enters the language network on 

a temporary basis (see, e.g., Just, Carpenter, Keller, et al., 
1996). It can also happen when a stroke-induced focal 
lesion chronically depletes the resources available in a 
left-hemisphere area, in which case the contralateral area 
enters the language network on a more permanent basis 
(see, e.g., Thulborn et al., 1999). Both forms of dynamic 
recruitment are consequences of the assignment problem 
that 4CAPS solves at each point in time, as the sentence 
comprehension model demonstrates below.

The Sentence Comprehension Model
The sentence comprehension model consists of four 

centers, corresponding to Broca’s and Wernicke’s areas 
and their right-hemisphere homologues. The centers, 
their primary functional specializations, and their canoni-
cal and noncanonical patterns of collaboration are shown 
in Figure 6. Collaboration is extensive, a consequence of 
(1) the two-step procedure by which new representations 
are first designed and then constructed and (2) the local-
ization of these steps to different centers, so that no one 
center bears complete responsibility for any level of lan-
guage processing. Moreover, as the right side of the fig-
ure shows, collaboration is dynamic: When the functional 
demands exceed the resources of the  well-specialized 
left-hemisphere centers, processing spills over to the less-
specialized right-hemisphere centers.

The Associative center. The Associative center cor-
responds to Wernicke’s area. It retrieves prior knowledge 
associations cued by perceptual inputs and existing lan-
guage representations. It combines these elements into de-
signs for new language representations. Associative does 
not itself construct these new representations, because 
it lacks the required constituent-structuring capabilities. 
Rather, it performs the first step of the process by collect-
ing together related information.

Associative performs the retrieval/design function for 
all levels of language. At the lexical level, it takes a word 
percept as input and retrieves associated information such 
as its grammatical class and animacy. The center com-
bines these elements into designs for new lexical feature 
representations. Associative also combines existing lexi-
cal feature representations into designs for new word-level 
phrase representations, combines existing phrase repre-
sentations into designs for new superordinate phrase rep-
resentations, and combines existing superordinate phrase 
representations into designs for new clause representa-
tions. For example, one production looks for the pattern 
of a determiner D adjacent to a noun N. When existing 
representations match this pattern, the production fires, 
creating a design for a new phrase XP that combines them. 
We denote this design {XP, D, N} to indicate its lack of 
internal (i.e., constituent) structure.

Associative also participates in the design of thematic 
representations. Thematic processing is expectation 
driven. When a noun phrase representation appears, Asso-
ciative designs an expectation that the verb that heads the 
clause will assign a thematic role to the phrase. Similarly, 
when a verb representation appears, Associative designs 
an expectation that the verb will assign a thematic role 
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for each element in the verb’s argument frame. Expecta-
tions are resolved in accord with the theta role criterion 
of  government–binding theory (Chomsky, 1981). Specifi-
cally, Associative looks for matching receiving and assign-
ing expectations, and when it finds a pair, combines them 
into a design for a new thematic role representation.

The Structure-Builder center. The Structure-Builder 
center corresponds to Broca’s area. In the proposed division 
of labor, Associative performs the first step of designing 
new representations, and Structure-Builder the second step 
of manufacturing these designs into  constituent-structured 
representations. Specifically, Structure-Builder takes the 
perceptual inputs, existing representations, and prior 
knowledge associates that are loosely collected together 
in designs and activates new representations that organize 
these constituents according to named relations; it does 
this for all levels of language. To continue the example 
above, {XP, D, N} is only a design; it leaves unspecified 
the type of the new phrase representation and the manner 
in which the embedded determiner and noun representa-
tions are organized. Structure-Builder takes this design, 
constructs a new representation of the “noun phrase” type, 
assigns the determiner to the “specifier” position, and as-
signs the noun to the “head” position, producing ,NP 

specifier:D head:N.. This new representation is avail-
able for the next iteration of design; for example, it may 
be combined with existing representations and retrieved 
prior knowledge associates into a design for a new clause 
representation. In this way, Associative and Structure-
Builder collaborate to articulate all of the representational 
levels required to comprehend sentences.

Right-hemisphere centers. The model also con-
tains RH Associative and RH Structure-Builder centers 
corresponding to the right-hemisphere homologues of 
Wernicke’s and Broca’s areas, respectively. The right-
hemisphere centers perform cognitive functions simi-
lar to those of their left-hemisphere counterparts, but at 
lower levels of specialization (efficiency). For example, 
although Structure-Builder is the most specialized cen-
ter for the construction of new thematic representations, 
RH Structure-Builder can also perform this function, 
though less efficiently; that is, it requires more resources 
to construct the same representation. Of course, the right-
hemisphere centers are more than just weak sisters; they 
have their own functional specializations that are gradu-
ally coming to be understood, such as prosodic processing 
and discourse comprehension (Beeman, 1998; Long & 
Baynes, 2002; Mason & Just, 2004; Meyer, Alter, Fried-

Figure 6. Centers of the sentence comprehension model, their primary language specializations, and their canonical and dynamic 
patterns of collaboration.
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erici, Lohmann, & von Cramon, 2002). These language-
related functions for which the RH homologues are most 
specialized are outside the scope of the present model.

Collaborative processing and dynamic network 
reconfiguration. The Associative and Structure-Builder 
centers collaborate closely to construct lexical, syntactic, 
and thematic representations, as described above and de-
picted by the ascending set of arrows on the left side of 
Figure 6. The canonical pattern of collaboration results 
from their complementary retrieval/design and structur-
ing functions. This pattern is expected during the compre-
hension of relatively simple sentences by relatively intact 
brains and is depicted schematically in Figures 5A and 
5B. If sentences become more complex, and therefore re-
source demands increase, or if centers are damaged, and 
therefore resource supplies are reduced, then the pattern 
of collaboration can change, as is depicted schematically 
in Figures 5C and 5D. In particular, if a center is well spe-
cialized for a cognitive function but lacks the resources to 
perform it, some or all of the function will spill over to a 
less-specialized center that can perform the function and 
has adequate resources. The dynamic entry of new centers 
into the language network, which causes the network to 
assume a noncanonical topology, is depicted by the arrows 
on the right side of Figure 6. Dynamic entry is typically 
on a just-in-time and as-needed basis. When resources be-
come available in well-specialized centers later in the sen-
tence, the spilled-over processing returns to those centers 
and the less-specialized centers exit the network.

We now illustrate the dynamic entry of centers with the 
processing of a center-embedded object-relative sentence: 
The senator that the reporter attacked admitted the error. 
Because the relative clause that the reporter attacked is 
embedded in the center of the main clause, the emerg-
ing representation of the main clause must be buffered 
while the interrupting relative clause is processed. This 
translates into large resource demands toward the end of 
the relative clause, causing the spillover of excess process-
ing from well-specialized left-hemisphere centers lack-
ing spare resources to less-specialized right-hemisphere 
centers possessing spare resources. To illustrate this, the 
capacity utilizations of the Structure-Builder and RH 
 Structure-Builder centers during the processing of this sen-
tence are plotted at the top of Figure 7. (For convenience 
of exposition, the words within noun phrases are grouped 
together and the average capacity utilization during their 
processing is plotted. Also, the concurrent and interleaved 
processing of the Associative and RH Associative centers 
is not depicted.) Recall that thematic roles, the output of 
sentence comprehension, are computed via constraint sat-
isfaction over pairs of thematic expectations, each keyed 
to a particular clause. The periods during which thematic 
expectations and clauses are active, and thus imposing re-
source demands, are depicted by the horizontal arrows at 
the bottom of Figure 7.

During the processing of the first five words of the 
sentence, representations for the main clause, the relative 
clause, and their attendant thematic expectations are de-

Figure 7. Capacity utilizations of the Structure-Builder and RH Structure-Builder centers of the sentence comprehen-
sion model during processing of an object-relative sentence. Below the graph, the thicker lines indicate the processing 
of the clauses and the thematic expectations, as well as the duration during which these representations draw on the 
resources of the centers. (The adjoining dashed lines indicate the resulting thematic role representations.)
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signed, constructed, and maintained. The resource supply 
of the well-specialized Structure-Builder is sufficient to 
meet the mounting resource demands, as indicated by its 
steadily rising capacity utilization. Because no processing 
spills over to the less-specialized RH Structure-Builder, 
its capacity utilization is 0. In other words, during the ini-
tial portion of the sentence, the centers of the language 
network collaborate according to the canonical pattern.

The next two words, attacked and admitted, mark the 
end of the relative clause and resumption of the main 
clause. The design, construction, and maintenance of 
thematic expectations triggered by these verbs impose 
additional resource demands, and for the first time, the 
resource supply of Structure-Builder is insufficient, as in-
dicated by its capacity utilization saturating at 1. For the 
first time, excess processing spills over to RH Structure-
Builder, which has secondary specializations for the con-
struction of new representations (and the maintenance of 
existing representations). This center enters the language 
network for the first time, as indicated by its nonzero ca-
pacity utilization. As a result, the topology of the network 
changes to a noncanonical pattern.

The entry of RH Structure-Builder is on a just-in-time 
and as-needed basis. Pairs of receiving and assigning 
thematic expectations are matched, and new thematic 
role representations are designed and constructed, as in-
dicated by the dashed arrows at the bottom of Figure 7. 
The satisfied thematic expectations are then suppressed, 
easing resource demands. In addition, admitted marks 
the resumption of the main clause, and the representation 
of the relative clause can be suppressed, further easing 
resource demands. At this point, Structure-Builder once 
again possesses sufficient resources for the construction 
and maintenance of all structured representations. There 
is no additional processing to spill over to RH Structure-
Builder, which exits the language network, as indicated by 
its capacity utilization returning to 0. Centers collaborate 
according to the canonical pattern for the remainder of the 
sentence, because resource demands never again exceed 
the resource supply of Structure-Builder. The dynamic 
entry and subsequent exit of centers into the language net-
work are emergent outcomes of the assignment problem 
that 4CAPS solves at each point in time.

Empirical Evaluation of the Sentence 
Comprehension Model

The sentence comprehension model can be evaluated 
against behavioral and brain imaging data collected from 
normal young adults and from patients with lesions. In 
the comparisons below, the description of the empirical 
studies is necessarily brief. The main goal here is to il-
lustrate how the operating principles embodied in 4CAPS 
account for the dynamic nature of the language network as 
a function of resource availability and the changing func-
tion demands of sentence comprehension.

Behavioral data. The model makes behavioral predic-
tions at multiple levels of aggregation: overall sentence 
reading times, phrase-by-phrase reading times, and word-
by-word reading times. At the broadest level, it predicts 

that the time to read a sentence is a function of the resource 
demands it imposes. For example, a sentence with a cen-
ter embedding requires additional resources to maintain 
the initial part of the main clause when it is interrupted 
during processing of the embedded clause. The human 
reading times we collected for 11 types of sentences of in-
creasing structural complexity (broadly defined), as well 
as the corresponding model processing times, are shown 
in Figure 8. The correlation between these data points is 
.97 ( p , .01), establishing the model’s general ability to 
account for what makes a sentence take longer to compre-
hend. A detailed evaluation of the model’s correspondence 
to the behavioral data, including phrase and word reading 
times on center-embedded and reduced-relative sentences, 
is provided by Varma and Just (2007). Generally speaking, 
the 4CAPS model performs as well in this regard as a pre-
vious 3CAPS model of sentence comprehension (Just & 
Carpenter, 1992).

Brain activation data. The capacity utilizations of 
model centers can be compared with the activations of 
corresponding cortical areas during the processing of var-
ious sentence types. Below, we evaluate the model against 
data collected in studies that employ both block and event-
related designs and that test both intact normal and brain-
damaged populations.

Structural complexity in a block design. Just, Car-
penter, Keller, et al. (1996) used a block design to as-
sess the effect of structural complexity on the activation 
levels of the core brain areas of the language network. 
Three types of sentences were presented to normal young 
adults:

Conjoined active: The senator attacked the reporter 
and admitted the error.

Subject-relative: The senator that attacked the re-
porter admitted the error.

Object-relative: The senator that the reporter at-
tacked admitted the error.

These sentences are nearly identical in their lexical con-
tent but differ in their syntactic structures. As described 
above, comprehending a center-embedded object-relative 
sentence requires multiple clauses and thematic expec-
tations to be maintained and processed, taxing the re-
sources of the Structure-Builder and Associative centers. 
At the points of highest resource demand, processing 
spills over from the well-specialized left-hemisphere cen-
ters of the model to the less-specialized right-hemisphere 
homologues, which dynamically enter the network. The 
(clausal and thematic expectation) resource demands are 
progressively lower for subject-relative and conjoined 
active sentences. As a result, the resource shortfalls in 
the left-hemisphere centers are progressively less severe 
for the latter sentence types, and the degree to which the 
right-hemisphere centers are activated is correspondingly 
attenuated.

The capacity utilizations of the model’s centers and the 
fMRI-measured activations of the corresponding brain 
areas exhibit the same profile—namely, an increase with 
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sentence complexity. The activations observed in Wer-
nicke’s area and its right-hemisphere homologue and the 
capacity utilizations of the corresponding model centers, 
Associative and RH Associative, are plotted in Figure 9. 
The activations observed in Broca’s area and its right-
hemisphere homologue and the capacity utilizations of the 
corresponding model centers, Structure-Builder and RH 
Structure-Builder, are plotted in Figure 10. The model re-
produces the two major empirical findings. First, the ca-
pacity utilizations of the left-hemisphere centers, which 
are well-specialized for language functions, increase with 
sentence complexity. This is exactly the pattern depicted 
schematically in Figure 5B above. Second, there is increas-
ing recruitment of the less-specialized right-hemisphere 
centers with increasing sentence complexity, due to excess 
processing spilling over to these centers, as shown in Fig-
ure 5C above. The close correspondence between the brain 
activations and the center capacity utilizations is reflected 
in the .98 ( p , .01) correlation between the 12 points of 
comparison in Figures 9 and 10. The model provides a good 
account of dynamic changes to the topology of the language 
network with increasing resource/functional demands.

Syntactic ambiguity in an event-related design. 
Mason, Just, Keller, and Carpenter (2003) used an event-
related paradigm to measure the time course of brain acti-
vation every 1.5 sec during the comprehension of classic 
reduced-relative garden path sentences, such as The expe-
rienced soldiers warned about the dangers conducted the 
midnight raid. The ambiguity arises with warned, which 
can be either the past participle or the past tense form of 
the verb warn. Under the past participle interpretation, 

the verb begins a reduced relative clause. This is the un-
preferred (less frequently occurring) interpretation. The 
second clause then imposes additional resource demands. 
This contrasts with the preferred interpretation, that 
warned is the past tense main verb of the sentence, which 
is more frequent and, because of its being a single clause, 
less resource demanding. This study presented four types 
of sentences to normal young adults that varied orthogo-
nally in whether they were ambiguous or unambiguous 
and whether they were ultimately resolved in favor of the 
unpreferred (two-clause) interpretation or the preferred 
(one-clause) interpretation.

Amb–unpref: The experienced soldiers warned 
about the dangers conducted the 
midnight raid.

Unamb–unpref: The experienced soldiers who were 
told about the dangers conducted 
the midnight raid.

Amb–pref: The experienced soldiers warned 
about the dangers before the mid-
night raid.

Unamb–pref: The experienced soldiers spoke 
about the dangers before the mid-
night raid.

Each sentence was followed by a true–false comprehen-
sion probe.

Like many contemporary models of sentence com-
prehension, the 4CAPS model processes ambiguities in 

Figure 8. Sentence reading times of human subjects and processing times of the sentence 
comprehension model for 11 sentences of increasing difficulty. The sentence types are A, ac-
tive; CS, cleft subject; P, passive; D, dative; CO, cleft object; RB-SR, right-branching subject-
relative; RB-OR, right-branching object-relative; PD, passive dative; CA, conjoined active; 
CE-SR, center-embedded subject-relative; and CE-OR, center-embedded object-relative.
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parallel. When the ambiguous verb warned is read, the 
model generates both the past participle and past tense 
lexical senses. Both interpretations are elaborated over 
subsequent words until disambiguating information is en-
countered, at which point the incorrect interpretation is 
suppressed, freeing resources, and the correct interpreta-
tion is retained. The additional resource demands of de-
signing, constructing, and maintaining multiple interpre-
tations manifest themselves as higher capacity utilizations 
for the ambiguous sentences than for the corresponding 
unambiguous sentences, especially in the ambiguous re-
gion. (The prediction can also be made by a serial model 
that sometimes has to do extra work [e.g., reanalysis] in 
the ambiguous case—namely, reprocessing the ambigu-

ous segment under the alternative interpretation. Note also 
that a parallel model with limited resources devolves to a 
serial model.) This ambiguity effect is more pronounced 
for the unpreferred sentences because of the additional 
resource demands associated with the second clause.

Recall that the capacity utilization time series of a 
model center can be transformed into a predicted activa-
tion time series that can be compared with the observed 
activation time series in the corresponding cortical area. 
This is a multistep process. First, a conversion rate be-
tween “model time” and real (i.e., human processing) time 
is estimated. A conversion rate of 20 cycles of the model 
time per 1.5 sec of real time was estimated by calibrat-
ing the number of cycles the model requires to process 
the four sentence types with the human reading times ob-
tained in a self-paced reading study using the same stimuli 
(MacDonald, Just, & Carpenter, 1992). Second, a capac-
ity utilization time series for each model center is con-
structed by sampling at the same frequency that Mason 
et al. (2003) used. The capacity utilization time series for 
the Associative center when processing the unambiguous–
preferred sentence is shown in Figure 11A. Third, the ca-
pacity utilization time series must be convolved with the 
hemodynamic response function (Equation 7) to produce 
a sequence of individual hemodynamic responses. (Recall 
that previous research has established that the shape of this 
function is well approximated by a time-delayed gamma 
function with delay δ 5 2.5 sec and gamma parameters 
τ 5 1.25 sec and n 5 3; Aguirre et al., 1998; Boynton 
et al., 1996.) This is shown for the Associative center in 
Figure 11C. Each hemodynamic response corresponds to 
one of the instantaneous capacity utilization values shown 
in Figure 11A, delayed and smoothed in time. Finally, the 
individual hemodynamic responses must be summed 
according to Equation 6 in order to produce a predicted 
fMRI time series. This is shown for the Associative center 
in Figure 11E. (The two peaks of the curve correspond to 
the processing of the sentence and the processing of the 
comprehension probe, respectively.)

The fMRI time series observed in Wernicke’s area for 
each of the four sentence types used by Mason et al. (2003) 
are shown in Figure 12A. There is a main effect of ambigu-
ity, with ambiguous sentences producing higher activation 
levels than unambiguous sentences, and a main effect of 
preference, with sentences resolved in favor of the unpre-
ferred interpretation producing higher levels of activation 
than sentences resolved in favor of the preferred interpre-
tation. The predicted fMRI time series in Associative, the 
corresponding model center, for each of the four sentence 
types are shown in Figure 12B. Qualitatively speaking, the 
model produces a similar ordering of capacity utilizations 
across the four sentence types as well as a similar activation 
profile over time. Quantitatively speaking, the correlation 
between the observed and predicted fMRI time series data is 
.86 ( p , .01). (Although not shown, the correlation between 
Broca’s area and Structure-Builder is comparably good: r 5 
.91, p , .01.) The model displays greater capacity utiliza-
tions on ambiguous than on unambiguous sentences because 
of the extra resource demands of dealing with (designing, 

Figure 9. Comparison of (A) fMRI activation of Wernicke’s 
area and its right-hemisphere homologue (from Just, Carpenter, 
Keller, et al., 1996) and (B) capacity utilization of the correspond-
ing Associative and RH Associative centers of the sentence com-
prehension model, on sentences of increasing difficulty.
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constructing, and maintaining) two interpretations. It dis-
plays greater capacity utilizations on unpreferred than on 
preferred sentences because of the extra resource demands 
of processing the second clause. These simulations illustrate 
the ability of a 4CAPS model to account for the time course 
of activation as measured by event-related fMRI.

Recovery from brain damage. Several PET stud-
ies have found right-hemisphere activation for language 
processing following recovery from aphasia caused by 
left-hemisphere stroke (Karbe et al., 1998; Weiller et al., 
1995). This phenomenon is generally attributed to contra-
lateral takeover of function after damage to left- hemisphere 
language areas (Finger, Buckner, & Buckingham, 2003; 

Heiss, Thiel, Kessler, & Herholz, 2003). In a recent fMRI 
study of 2 stroke patients, one with damage to Wernicke’s 
area and the other with damage to Broca’s area, the right-
hemisphere homologue of the damaged area showed sub-
stantial activation during sentence comprehension (Thul-
born et al., 1999). We focus on 1 patient (Case 1) who 
exhibited a dense expressive aphasia immediately after a 
left middle cerebral artery stroke, which produced a large 
focal lesion in Broca’s area. (The other patient is more dif-
ficult to evaluate because he suffered from epilepsy in ad-
dition to the stroke.) However, 6 months after the stroke, 
language function had substantially recovered, and the pa-
tient performed with moderately high accuracy in an fMRI 
sentence comprehension study requiring the silent read-
ing of simple sentences (mean length 5.5 words) and the 
answering of true–false comprehension probes. The main 
finding was that Broca’s area, which activates in normal 
readers, exhibited no activation in the patient, reflecting 
the catastrophic effect of the lesion, whereas the contra-
lateral area was clearly activated. This pattern presumably 
occurs because the cognitive functions formerly performed 
by Broca’s area have spilled over to its right homologue on 
a permanent basis. By contrast, the undamaged Wernicke’s 
area and its right-hemisphere homologue showed the typi-
cal pattern found in normal right-handed participants, with 
substantially more activation in the left- than in the right-
hemisphere area. These data are shown in Figure 13A.

The patient’s Broca’s lesion was modeled by depriving 
the corresponding model center, Structure-Builder, of all 
of its activation resources. Recall that when a center well 
specialized for a cognitive function lacks the resources to 
perform that function, the center with the next highest rela-
tive specialization for that function that possesses adequate 
resources will be recruited into the network to perform 
the function, although less efficiently. This was depicted 
schematically in Figure 5D. The capacity utilizations of 
the model’s four centers are shown in Figure 13B. Because 
the lesioned Structure-Builder center lacks the resources 
to participate in processing, its capacity utilization is 0 and 
the function of constructing new structured representations 
spills over entirely to RH Structure-Builder, as indicated 
by the high capacity utilization in that center. (In this sense, 
4CAPS models are like sports teams: When one member 
is injured, a team can continue to function by substituting 
a less effective player with qualitatively similar skills.) By 
contrast, the unlesioned Associative and RH Associative 
centers function as in normal comprehension, with the As-
sociative center performing the bulk of the retrieval/design 
function for which it is specialized, and RH Associative 
assisting only when the resource demands of this function 
exceed the resource supply of Associative. The correlation 
between the model and the data is .99 ( p , .01). In sum-
mary, the sentence comprehension model shows promise 
for accounting for how large-scale networks adapt to dam-
age to their canonical components.

Summary of the Sentence Comprehension Model
The sentence comprehension model accounts for overall 

sentence reading times and patterns of brain activation (as 

Figure 10. Comparison of (A) fMRI activation of Broca’s 
area and its right-hemisphere homologue (from Just, Carpen-
ter, Keller, et al., 1996) and (B) capacity utilization of the corre-
sponding Structure-Builder and RH Structure-Builder centers 
of the sentence comprehension model, on sentences of increasing 
difficulty.
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Figure 11. (A) Capacity utilization of the Associative center of the sentence comprehension model, sampled every 1,500 msec; 
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hemodynamic response function; (D) summation of the convolved capacity utilizations; (E) predicted fMRI time series, which 
can be compared with the fMRI time series observed in Wernicke’s area.



CortiCal neuroarChiteCture of Cognition    173

measured by fMRI), specifically for mean activation lev-
els as measured in block-design studies and moment-to-
moment fluctuations as measured in event-related stud-
ies. It also accounts for the pattern of activation after 
stroke-induced lesioning of a left-hemisphere language 
area—specifically, the contralateral takeover of cognitive 
function. The model’s empirical success follows largely 
from the operating principles embodied in the underly-
ing 4CAPS architecture: The language network adapts 
to changes in resource availability within centers and to 
changes in the functional demands of sentence compre-
hension. In particular, the same resource allocation algo-
rithm explains both the relatively transient recruitment of 
right-hemisphere areas when comprehending structurally 
complex sentences (Just, Carpenter, Keller, et al., 1996) 

and the relatively permanent recruitment of these areas 
following damage to their left-hemisphere homologues 
(Thulborn et al., 1999).

IV. 4CAPS MODELS OF SPATIAL 
PROBLEM SOLVING

This section describes a general model of spatial prob-
lem solving. The general model synthesizes two existing 
theories: a computational theory of human problem solv-
ing and a neuropsychological theory of executive function. 
The general model is instantiated in two domains, Tower 
of London (TOL) problem solving and mental rotation of 
Shepard–Metzler (1971; henceforth “SM”) figures. In ad-
dition to extending the scope of 4CAPS beyond sentence 

Figure 12. (A) fMRI activation time series observed in Wernicke’s area (from Mason et al., 2003) during 
comprehension of ambiguous and unambiguous sentences that are resolved in favor of either the preferred 
or the unpreferred interpretation. (B) The predicted fMRI time series of the corresponding Associative 
center of the sentence comprehension model.
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comprehension, the TOL and mental rotation models il-
lustrate how the operating principles account for another 
dynamic property of large-scale cortical networks: shift-
ing strategies with increasing task difficulty.

The general model inherits its problem-solving mecha-
nisms from Soar (Newell, 1990), a computational account 
of human problem solving whose sufficiency has been 
demonstrated by successful models of a range of tasks 
(Rosenbloom, Laird, & Newell, 1993). These mechanisms 
include a hierarchy of goals that guide proposal of opera-
tors, selection between operators based on preferences, 
and application of the selected operator to the current state 
to produce a new current state. The general model also in-
herits elements from Shallice’s (1982) theory of executive 
function, in which the decision of what to do next (i.e., 
which operator to select and apply) results from the in-
terplay of two streams of cognitive control. The routine 

stream is parallel, bottom up, and perceptually driven. It is 
driven by low-level schemas that are triggered by new per-
ceptual inputs. By contrast, the nonroutine stream is serial, 
top down, and goal driven. It is driven by high-level sche-
mas that comprise the supervisory attention system (SAS). 
Resolving the two streams of control is the job of the con-
tention scheduler. Shallice and Burgess (1996) attribute the 
routine and nonroutine streams of control in a general way 
to posterior and prefrontal areas, respectively.

Neither Soar nor Shallice’s (1982) theory alone pro-
vides an adequate basis for the 4CAPS general model 
of spatial problem solving. Although Soar offers a com-
prehensive account of problem solving, it is unclear how 
to map its computational mechanisms to brain function. 
Conversely, although Shallice has localized the SAS and 
contention scheduler to brain areas in a general way, it 
is unclear whether these constructs are powerful enough 
to account for complex problem solving (as opposed to 
simple forms of executive function). We have therefore 
synthesized them into a single model that inherits their re-
spective strengths, offsets (some of) their respective weak-
nesses, and situates them within the resource-constrained 
computational environment of 4CAPS.

The 4CAPS general model of spatial problem solving 
uses the computational mechanisms of Soar to implement 
the routine and nonroutine control streams of Shallice’s 
(1982) theory. We refer to the routine stream as the per-
ceptual mode and the nonroutine stream as the strategic 
mode, for reasons that will become clear below. The per-
ceptual mode is driven by visuospatial analysis, which re-
sults in the proposal of perceptual operators that increase 
the configurational similarity between the current prob-
lem state and the desired end state. The perceptual mode 
alone can solve simple problems—that is, those whose 
starting states can be transformed into their ending states 
by pure hill-climbing (using the terminology of artificial 
intelligence). Its limited competency is consistent with 
the success of patients with frontal lobe lesions on simple 
tests of executive function (Owen, Downes, Sahakian, 
Polkey, & Robbins, 1990). However, if an operator is se-
lected but cannot be applied because some of its precondi-
tions are not satisfied, the perceptual mode impasses and 
the strategic mode assumes some control. The strategic 
mode proposes goals to establish the unsatisfied precondi-
tions and strategic operators that accomplish these goals. 
If the preconditions of a strategic operator are themselves 
unsatisfied, then goals to establish them are recursively 
proposed, producing the goal hierarchies characteristic of 
complex problem solving. As the strategic mode progres-
sively takes actions to satisfy outstanding preconditions, 
the perceptual mode gradually regains control, and the 
original perceptual operator is applied.

Four centers compose the 4CAPS model of spatial 
problem solving, as shown in Figure 14. The RH Spa-
tial and LH Spatial centers correspond to right- and left-
hemisphere superior parietal cortex, respectively, includ-
ing superior parietal lobule (SPL) and, particularly, the 
intraparietal sulcus area (IPS). We propose that, broadly 
speaking, RH Spatial is functionally specialized for di-
recting visuospatial attention and LH Spatial for the con-

Figure 13. (A) The number of voxels activated during sentence 
comprehension in four areas of the brain of a stroke patient (from 
Thulborn et al., 1999). The patient’s stroke produced a lesion in 
Broca’s area (L. IFG)—hence, the complete absence of activation 
there. (B) The capacity utilizations of the corresponding centers 
of the sentence comprehension model. These simulations were 
produced by “lesioning” the Structure-Builder center (i.e., de-
pleting its resources)—hence, the complete lack of capacity uti-
lization there.
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struction, transformation, and suppression of visuospatial 
representations (Carpenter et al., 1999; Chelazzi & Cor-
betta, 2000; Mesulam, 1990). RH Spatial is the seat of 
the perceptual mode. It compares the current and ending 
states and proposes perceptual operators that increase the 
configurational similarity between them (without regard 
for whether the preconditions of these operators are satis-
fied). LH Spatial serves as the visuospatial workspace of 
the model. The starting and ending states become available 
to it from  visual/perceptual processing that is outside the 
scope of the model (presumably performed by occipital 
cortex). LH Spatial applies the selected operator to the cur-
rent state, if possible, producing a new current state. This 
center also maintains a record of the intermediate states 
generated during problem solving. Implicit in this record 
is information required to perform certain spatial problem-
solving tasks, such as administrations of the TOL task in 
which participants are asked to determine the minimum 
number of moves required to solve a problem. The pro-
posed functional distinction between the RH Spatial and 
LH Spatial centers, and thus between the corresponding 
superior parietal areas, is based on evidence from a variety 
of neuroimaging and neuropsychological studies; for more 
background on this model, see Newman et al. (2003).

The RH Executive and LH Executive centers corre-
spond to right- and left-hemisphere DLPFC, respectively, 
including medial prefrontal cortex. RH Executive serves 
a role analogous to the SAS of Shallice’s (1982) theory. It 
is specialized for plan formulation, which it accomplishes 
via hierarchical planning (to again use the terminology of 
artificial intelligence), decomposing difficult problems 
into conjunctions of simpler problems through the pro-
posal of goals. It also proposes strategic operators that 
achieve these goals. As the seat of the strategic mode, 
it is responsible for the creation, maintenance, and sup-
pression of goals and strategic operators. Plan formula-
tion is distinguished from plan execution, for which LH 
Executive is specialized. It selects between the operators 
proposed by other centers, including the perceptual opera-
tors of RH Spatial and the strategic operators of LH Ex-
ecutive. Selection is via Soar-like productions that assert 
heuristic preferences about the relative goodness of pairs 

of operators (e.g., an operator that achieves a goal is pre-
ferred to one that does not). This center also consolidates 
over preferences to select the most preferred operator. 
In adjudicating between perceptual and strategic opera-
tors, and therefore between the perceptual and strategic 
control modes, LH Executive serves the same functional 
role as the contention scheduler of Shallice’s theory. The 
differential specializations attributed to RH Executive 
and LH Executive, and thus to right and left DLPFC, are 
based on a number of empirical findings. For example, 
plan formulation in the Tower of Hanoi (TOH) puzzle is 
more impaired in patients with right prefrontal damage 
than in those with left prefrontal damage (Morris, Miotto, 
Feigenbaum, Bullock, & Polkey, 1997a). By contrast, 
when multiple solution sequences exist and the conflict 
between them must be resolved, plan execution is more 
adversely affected in patients with left prefrontal lesions 
than in those with right prefrontal lesions (Morris, Mi-
otto, Feigenbaum, Bullock, & Polkey, 1997b). Additional 
evidence for the proposed functional distinction lies in 
their differential patterns of functional connectivity with 
parietal areas (Newman et al., 2003). (Source code for the 
general model of spatial problem solving is available at 
the 4CAPS Web site. Varma [2006] provides a detailed 
prose description of the productions.)

The key property here of the general model is the smooth 
and dynamic transfer of control between the perceptual and 
strategic modes. The two modes are not mutually exclusive; 
the model does not remain in either one or the other, and it 
does not shift abruptly between them. Even when goals are 
present in RH Executive and that center proposes strategic 
operators to achieve them, RH Spatial continues to propose 
perceptual operators. Selecting between strategic and per-
ceptual operators—resolving the conflict between the two 
control modes—is a function that LH Executive performs 
dynamically at each point in time as a consequence of the 
operating principles embodied in 4CAPS.

The TOL Model
The TOL task seems particularly appropriate for evalu-

ating cognitive neuroarchitectures because it has been in-
vestigated using both behavioral and brain imaging meth-

Figure 14. 4CAPS model of spatial problem solving.
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ods with both normal and patient populations. A sample 
TOL problem is shown at the bottom of Figure 4C. It is 
defined by a starting configuration (on the left) and an 
ending configuration (on the right). Each configuration 
consists of three pockets of varying depths accommodat-
ing between one and three balls and a distribution of three 
balls across the pockets, with no pocket containing more 
balls than its depth permits. Solving a TOL problem (op-
timally) requires transforming the starting configuration 
into the ending configuration via a (minimum-length) se-
quence of legal moves. A legal move transfers a ball from 
the topmost position of one pocket to the topmost position 
of another pocket with available space. A variant of the 
TOH task, TOL is more useful for evaluating patients with 
frontal lesions because its instructions are simpler and it 
permits finer gradations in problem difficulty. Algorithms 
for solving TOL problems have not been formally speci-
fied and empirically documented, as they have for TOH 
problems (see, e.g., Simon, 1975); there exist only a hand-
ful of models, each employing a different ad hoc strat-
egy (Dehaene & Changeux, 1997; Polk, Simen, Lewis, & 
Freedman, 2002). For the TOL model, we have adapted a 
strategy used in the TOH task (the so-called sophisticated 
perceptual strategy) that includes both strategic and per-
ceptual processing, so that the smooth shift between the 
two control modes can be illustrated. A description of this 
strategy, the productions that realize it, and their distribu-
tion over the four model centers are provided in Appen-
dix A of Newman et al. (2003). (The source code for the 
TOL model, as well as a related TOH model, is available 
from the 4CAPS Web site.)

To illustrate the strategy and its execution by the TOL 
model, a problem-solving trace is shown in Figure 15. In 
this trace, the perceptual mode falters because of an unsatis-
fied precondition, and there is a partial shift to the strategic 
mode to establish this precondition (and a partial shift back 
after the precondition is established). During the first cycle, 
RH Spatial compares the current configuration (which is 
also the starting configuration) with the ending configura-
tion and proposes two perceptual moves that potentially 
increase the similarity between them: Move A would move 
the white ball to the middle pocket, and Move B, the gray 
ball to the middle pocket. During the second cycle, LH Ex-
ecutive asserts a preference for B over A on the basis of the 
TOL heuristic that it is better to move balls into “deeper” 
positions in the ending configuration than into “shallower” 
positions. During the third cycle, LH Executive selects B 
on the basis of this preference. However, B cannot be per-
formed, because one of its  preconditions—that there be 
no ball above the one to be moved—is not satisfied. An 
impasse occurs, and on the fourth cycle, RH Executive ac-
tivates a goal to resolve the impasse by unblocking the gray 
ball. This marks a partial shift to the strategic mode, with 
its greater executive supervision.

During the fifth cycle, RH Executive proposes a stra-
tegic Move C to resolve the impasse. C makes progress 
toward a goal, but does not increase the perceptual simi-
larity between the current and ending configurations. Also 
on the fifth cycle (because the model has not completely 
shifted to the strategic mode), RH Spatial concurrently 

proposes the same two perceptual moves it proposed dur-
ing the first cycle. During the sixth cycle, LH Executive 
asserts preferences concerning the three moves. The strate-
gic Move C emerges as most preferred, and on the seventh 
cycle it is selected. In this way, LH Executive adjudicates 
between the perceptual and strategic controls modes on a 
moment-by-moment basis. Because all of C’s precondi-
tions are satisfied, LH Spatial performs it on the eighth 
cycle, transforming the current configuration into a new 
current configuration. Notice that the gray ball is now un-
blocked (i.e., the goal has been achieved). Therefore, this 
goal will be suppressed on the next cycle (not shown) and 
the influence of the strategic mode will slowly decline, an 
important dynamic property of 4CAPS. Perceptual-mode 
processing is sufficient to solve the problem in two ad-
ditional moves (also not shown).

Empirical evaluation. The TOL model was evaluated 
against the behavioral and brain imaging data that New-
man et al. (2003) collected from normal young adults who 
solved TOL problems with (optimal) solutions of between 
one and six moves. Problems were presented in blocks 
of increasing difficulty: “easy” blocks consisted of five 
1- and 2-move problems and one 3-move problem; “mod-
erate” blocks consisted of one 1-move problem and three 
3- and 4-move problems; and “difficult” blocks consisted 
of one 1-move problem and two 5- and 6-move problems. 
Both the human problem solvers and the TOL model dis-
played increasing solution times with increasing problem 
difficulty, as shown in Figure 16A, with a correlation of 
.96 ( p , .01) between them.4 It is perhaps not surprising 
that the more moves a problem requires, the more cycles 
of processing the model requires. What is surprising is 
that the model produces this linear relation while smoothly 
shifting from predominantly perceptual-mode process-
ing on simpler problems to a mixture of perceptual- and 
 strategic-mode processing on more difficult problems. 
Moreover, this shift is dynamic. It is not mandated in a 
top-down, all-or-nothing fashion by an executive control-
ler. Rather, it emerges on a moment-by-moment basis 
as LH Executive selects between the perceptual moves 
proposed by RH Spatial and the strategic moves (if any) 
proposed by RH Executive.

The capacity utilizations of the four model centers can 
be compared with the activations in the corresponding 
cortical areas—left and right DLPFC and superior pari-
etal cortex—for easy, moderate, and difficult blocks. The 
brain activations are shown in Figure 16B and the capac-
ity utilizations in Figure 16C. Both right and left DLPFC 
show a reliable increase in activation with increasing 
block difficulty. The corresponding model centers, RH 
and LH Executive, show a similar increase in capacity 
utilization. Although it is tempting to dismiss the increas-
ing capacity utilization as an overall difficulty effect, the 
model offers a more nuanced explanation. The increase 
in RH Executive is due to the increasing need for plans 
to establish unsatisfied preconditions, which requires the 
resource-consuming creation and maintenance of more 
and more goals and strategic operators. The increase in 
LH Executive is due to the increasing difficulty of con-
trolling plan execution, because selection is between not 
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just perceptual moves, but both perceptual and strategic 
moves, which requires the resource-consuming creation 
of more and more preferences.

Next, consider the superior parietal data, which are 
important because they do not show an overall difficulty 
effect, and therefore represent a more difficult test of the 
TOL model. There is a reliable increase in activation with 
problem difficulty in left superior parietal cortex, but no 
(reliable) effect in its right-hemisphere homologue, as 
shown in Figure 16B. Qualitatively speaking, the model 
reproduces these patterns: The capacity utilization of LH 
Spatial increases with problem difficulty, whereas that of 
RH Spatial is relatively flat, as shown in Figure 16C. More 
importantly, the model offers a principled explanation for 
the differential activation patterns of the two superior pa-
rietal areas. LH Spatial is the visuospatial workspace of 
the model, and as such must create and maintain all inter-
mediate puzzle configurations as a record of the number 
of moves required to solve the problem—the required re-

sponse in the Newman et al. (2003) administration of the 
TOL task. As the number of moves increases, so does the 
number of intermediate puzzle configurations, and there-
fore the resource demands on this center. By contrast, 
the resource demands on RH Spatial are relatively flat 
(or even decline slightly) with problem difficulty. As the 
seat of the perceptual control mode, this center is always 
proposing perceptual moves that increase the similarity 
of the current and ending puzzle configurations. Because 
the number of such moves is relatively constant with in-
creasing problem difficulty (or even declines slightly as 
the visual similarity between start and goal becomes less 
salient), the capacity utilization of this center is relatively 
flat, which is consistent with the statistically flat activa-
tion profile displayed by the corresponding right superior 
parietal area. The qualitative match between the data and 
model for the 12 points of comparison in Figures 16B and 
16C is consistent with the .96 ( p , .01) correlation be-
tween them.

Figure 15. A trace of the Tower of London model, illustrating the smooth transfer of control between the perceptual and strategic 
modes.
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In sum, the 4CAPS model of TOL problem solving ac-
counts well for the behavioral and brain imaging data of 
one study (Newman et al., 2003). Its important contribu-
tion here is illustrating a property of large-scale cortical 
networks not seen before: the smooth shift between per-
ceptual and strategic control in response to task difficulty. 
(This property is also displayed by a 4CAPS model of the 
closely related TOH task that accounts for relevant behav-
ioral and brain imaging data collected from normal young 
adults and patients with frontal lesions [Varma, 2006].)

The Mental Rotation Model
A second 4CAPS spatial model performs the Shepard–

Metzler (1971) mental rotation task and accounts for the 
fMRI data in this task (an increase in parietal activation 
with rotation angle; Carpenter et al., 1999). The partici-
pants’ task is to decide whether two figures are the same or 
different in their structure, except for a rotation, as shown 
at the bottom of Figure 4B. Like the TOL model (and the 
sentence comprehension model before it), the mental ro-
tation model displays increasing capacity utilization with 
increasing task difficulty. The model is notable for the 
selectivity of this increase, confined to just the spatial 
centers, a prediction that can be evaluated against neu-
roimaging data.

The mental rotation problem consists of two SM fig-
ures, each composed of four segments joined end-to-end 
at 90º angles. The participant must decide whether the 
figures are identical (except for a rotation) or mirror im-
ages. The classic behavioral finding, that response time 
is a linearly increasing function of angular disparity, is 
commonly interpreted as indicating that the figures must 
be rotated into alignment so that they can be directly com-
pared (Shepard & Metzler, 1971). The 4CAPS mental 
rotation model utilizes a strategy that Just and Carpen-
ter (1985) formulated on the basis of a detailed analysis 
of eye movement behavior during rotation of SM figures 
(and instantiated in a CAPS model). The eye movements 
identified four successive processing stages:

•	 initial	search for a pair of potentially correspond-
ing segments of the figures;

•	 transformation of one segment by stepwise men-
tal rotation until it is aligned with the other seg-
ment (the sequence of rotation steps comprises a 
rotation trajectory, which is stored);

•	 subsequent	search for a second pair of potentially 
corresponding segments; and

•	 confirmation that when one segment of the sec-
ond pair is rotated through the trajectory con-
structed previously, it is aligned with the other 
segment.

This strategy produces the classic linear relation between 
angular disparity and response time, because of the step-
wise construction of a rotation trajectory during transfor-
mation and the stepwise application of this trajectory dur-
ing confirmation.

Figure 16. (A) Human solution times (from Newman et al., 
2003) and Tower of London (TOL) model processing times on 
blocks of problems of increasing difficulty. (B) fMRI activations 
of left and right superior parietal cortex (including the intrapari-
etal sulcus) and DLPFC (from Newman et al., 2003). (C) Capacity 
utilization of the corresponding LH and RH Spatial and Execu-
tive centers of the TOL model.
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The mental rotation model implements the four-stage 
strategy within the general model of spatial problem solv-
ing. It is composed of the same centers as the TOL model, 
which correspond to the same cortical areas and possess the 
same functional specializations. The mental rotation model 
differs from the TOL model in relying much less on the 
 strategic-mode processing of the executive centers and more 
on the perceptual-mode processing of the spatial centers.

The mental rotation model solves an SM problem as fol-
lows. Initially, the SM figures that constitute the problem 
are encoded in LH Spatial by visual/perceptual process-
ing outside the scope of the model. The representational 
scheme is that of Marr and Nishihara (1978). During ini-
tial search, RH Spatial examines the figures and proposes 
pairs of segments, one from each figure, that might be 
matching segments. During transformation, RH Spatial 
proposes rotation steps that reduce the difference in the 
orientations of the segments. Each step is of a fixed size, 
a parameter of the model that was fixed a priori at 10º 
(but within some range the parameter has little effect on 
the match to the fMRI data). Rotation steps are proposed 
and executed until the pair of corresponding segments is 
brought into orientation alignment. LH Spatial maintains 
a record of the rotation steps taken; these constitute the 
rotation trajectory. During the next, subsequent search, 
phase, RH Spatial examines the figures and proposes a 
second pair of segments, one from each figure, that might 
be corresponding segments. Finally, during confirmation, 
RH Spatial proposes rotation steps for one segment of 
the second pair using the rotation trajectory constructed 
during the transformation stage. RH Spatial’s proposal 
of possible rotation steps and LH Spatial’s execution and 
maintenance of the record of rotation steps consume re-
sources proportional to the angular disparity.

The executive centers play minimal roles during mental 
rotation. At each point in time, RH Executive maintains 
a goal specifying the current stage of the strategy (i.e., 
initial search, transformation, subsequent search, and 
confirmation). LH Executive selects between potentially 
matching pairs of segments during initial search and sub-
sequent search and between proposed rotation steps dur-
ing transformation and confirmation. Resource demands 
in both centers are relatively low and relatively constant 
(i.e., independent of angular disparity). Of course, other 
brain areas, not included in the model, also contribute to 
mental rotation, such as inferior temporal areas that prob-
ably encode the detailed structure of the figures without 
showing a monotone relation between activation level and 
angular disparity (Carpenter et al., 1999), as well as ad-
ditional executive areas (such as anterior cingulate).

Empirical evaluation. Normal young adults solved 
SM problems with angular disparities (for same trials) 
ranging from 0º to 120º (Carpenter et al., 1999). The 
mental rotation model provides a good account of the be-
havioral measures: The human response times and model 
processing times (which were obtained without fitting any 
parameters) are shown in Figure 17A. The close qualita-
tive match is confirmed by a correlation of .99 ( p , .01).

The fMRI-measured activation in left and right supe-
rior parietal cortex (including the IPS) increased approxi-

mately linearly with angular disparity, whereas activa-
tion in left and right DLPFC was minimal and relatively 
unaffected by angular disparity, as shown in Figure 17B. 
(These DLPFC activation data are from the original data 
analysis, and were not reported in Carpenter et al., 1999.) 
The mental rotation model matched this pattern. Capacity 
utilization in the spatial centers increased linearly with 
angular disparity, but was relatively flat in the executive 
centers, as shown in Figure 17C. The qualitative match be-
tween the data and the model for the 16 points of compari-
son in Figures 17B and 17C is supported by the .99 ( p , 
.01) correlation between them. The fit of the model was 
obtained by estimating four free parameters, the resource 
capacities of the four centers. (These parameters are not 
responsible for the predicted differential response of the 
spatial and executive centers with increasing angular dis-
parity; nor do they determine the slopes of the lines plot-
ted in Figure 17C, only their intercepts. Nor is the rotation 
rate parameter, fixed a priori at 10º, responsible for the 
good fit; it can only affect the degree of a sloped line, not 
whether the line is sloped or flat.) The rotation model’s fit 
is based on the differential pattern of increasing superior 
parietal activation but flat prefrontal activation found with 
increasing angular disparity. Thus, the 4CAPS model of 
mental rotation provides an account of a smooth and se-
lective increase in resource consumption in just the spatial 
centers (corresponding to superior parietal cortex) with 
increasing angular disparity.

Summary of the Spatial Problem-Solving Models
The distinguishing characteristic of the models is their 

ability to smoothly shift from one mode of processing to 
another as the functional and resource demands of task 
performance require. The TOL model exhibits a smooth 
shift from perceptual-mode processing to strategic-mode 
processing as task difficulty increases. The signature of 
this smooth shift is increasing capacity utilization in the 
executive and LH Spatial centers, and thus the corre-
sponding bilateral prefrontal and left parietal areas, with 
increasing task difficulty. Notably, there is no need for 
a central executive controller to mandate the shift. The 
mental rotation model displays a smooth increase in the 
resource demands of the spatial centers, and thus the cor-
responding superior parietal areas, with increasing angu-
lar disparity. Both forms of dynamic adaptation to chang-
ing demands follow from the general 4CAPS operating 
principles.

V. DUAL-TASK PERFORMANCE AND 
INTERCENTER CONSTRAINTS

This section focuses on the 4CAPS operating principle 
concerning the resource constraints that affect the system 
as a whole rather than individual centers (or brain areas). 
We refer to such constraints as intercenter resource con-
straints. The claim that cognition is the emergent product 
of a large-scale cortical network naturally implies infor-
mational interdependencies among the network’s nodes. 
Intercenter constraints place a limit on these interdepen-
dencies in a way that is separate from the limitations on 
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the nodes themselves. Specifically, 4CAPS proposes in-
tercenter constraints, interpreted as bandwidth limitations, 
that govern intercenter communication. (Alternate inter-
pretations of intercenter constraints will be considered at 
the end of this section.) Under an intercenter resource con-
straint, multiple centers draw their resources from a shared 
and limited supply. As a result, the resources available to 
any one center can depend on the resource demands of 
other centers. In particular, if the joint resource demands 
of centers governed by the same intercenter constraint ex-
ceed the available supply, the demands of individual cen-
ters will not be fully satisfied. This section evaluates the 
role of intercenter constraints in the context of a 4CAPS 
model of complex dual-tasking.

Specifically, we consider studies of dual-tasking in 
which two complex tasks are performed concurrently, and 
in which the two component tasks are underpinned by 
largely independent cortical networks. Because each cor-
tical network requires communication bandwidth to link 
its constituent centers, concurrent use of both networks 
imposes heavy demands on the shared communications 
infrastructure. We can therefore evaluate the necessity of 
intercenter constraints by determining whether 4CAPS 
models that include such constraints fit the dual-tasking 
data better than those that do not. (Additional data sources 
for evaluating intercenter constraints will be considered in 
the General Discussion.)

There are many cognitive neuroimaging studies of 
 dual-tasking, and not surprisingly, they find different ef-
fects. By effect, we mean the relation between the pattern 
of activation observed during dual-tasking versus that ob-
served during single-tasking. We focus here on perhaps 
the most surprising of these effects, underadditivity, which 
occurs when the activation when performing two tasks 
concurrently is less than the sum of the activation when 
performing each task in isolation (see, e.g., Just, Carpen-
ter, Keller, et al., 2001; Loose, Kaufmann, Auer, & Lange, 
2003; Newman, Keller, & Just, 2007; Szameitat, Schu-
bert, Müller, & von Cramon, 2002). As described below, 
underadditive activations during dual-tasking can be ex-
plained by intercenter resource constraints. (Other effects 
that have been observed in studies of dual- tasking, and the 
conditions under which 4CAPS can produce these effects, 
will be briefly considered at the end of this section.)

Two 4CAPS models of dual-tasking are described 
below. The base model represents the hypothesis that in-
tercenter resource constraints are not necessary, whereas 
the augmented model represents the simplest possible al-
ternative hypothesis: that all centers draw their resources 
from a single shared supply, interpreted as a bandwidth 
limitation on communication within the cortex. Only the 
augmented model will prove capable of accounting for the 
underadditive effects found in some studies of complex 
dual-tasking.

The dual-task fMRI data that were modeled come from 
a study that used two component tasks that draw on inde-
pendent networks (Just, Carpenter, Keller, et al., 2001). 
The language task was verification of auditorily presented 
sentences, such as Botany is a biological science and it 

Figure 17. (A) Human response time (from Carpenter et al., 
1999) and mental rotation model processing times for solving 
Shepard–Metzler (1971) problems of increasing angular dispar-
ity. (B) fMRI activation of left and right superior parietal cortex 
(including the intraparietal sulcus) and DLPFC (from Carpenter 
et al., 1999). (C) Capacity utilization of the corresponding LH and 
RH Spatial and Executive centers of the mental rotation model.
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deals with the life, structure, and growth of plants. The 
spatial task was the SM mental rotation task described 

above. Participants performed the language and spatial 
tasks separately in single-task conditions and concurrently 
in a dual-task condition. It is important to note that each 
component task requires many seconds of processing for 
each item, and therefore dual-tasking requires concur-
rent execution of two threads of thought; this contrasts 
with dual-tasking studies that employ simple component 
tasks, and that can be performed by rapidly switching be-
tween quickly processed items. The activations of bilateral 
temporal and bilateral parietal areas during single- and 
dual-tasking (shown earlier in Figure 3) are reproduced 
in Figure 18A. (Because no interesting laterality effects 
were observed, the activations were summed across hemi-
spheres. Also, because the activations of frontal areas 
were relatively low and constant, they are not shown.) In 
the language task performed in isolation, posterior STG 
and posterior middle temporal gyrus (MTG) showed bi-
lateral activation, consistent with other fMRI studies of 
auditory language comprehension (Michael, Keller, Car-
penter, & Just, 2001; Schlosser, Aoyagi, Fulbright, Gore, 
& McCarthy, 1998), whereas the parietal areas were not 
activated. The opposite pattern was observed during the 
spatial single task (there was activation in bilateral pari-
etal areas but not in posterior STG/MTG), consistent with 
the attribution of visuospatial processing to parietal areas, 
as described above (Carpenter et al., 1999; Cohen et al., 
1996). In the dual-tasking condition, in which both tasks 
were performed concurrently, activation was observed in 
both temporal and parietal areas, but it was 25% to 40% 
less (respectively) than the sum of the activations observed 
in the single-task conditions. The new phenomenon to ac-
count for is the underadditivity.

Dual-Task Models
The base model is simply the conjunction of the sentence 

comprehension (with auditory input) and mental rotation 
models described above. It consists of the eight centers 
that together comprise these models: Associative and RH 
Associative correspond to left posterior STG/MTG (i.e., 
Wernicke’s area) and its right-hemisphere homologue, re-
spectively; Structure-Builder and RH  Structure-Builder 
correspond to left inferior frontal gyrus (IFG; i.e., Broca’s 
area) and its right-hemisphere homologue, respectively; 
LH Executive and RH Executive correspond to left and 
right DLPFC, respectively; and LH Spatial and RH Spa-
tial to left and right superior parietal areas (SPL/IPS), re-
spectively. No additional functional specializations were 
specified for these centers, and no other centers (corre-
sponding to additional brain areas) were added. The dis-
tinguishing characteristic of the base model is the lack of 
intercenter resource constraints.

The augmented model extends the base model with a 
single intercenter constraint on the joint resource con-
sumption of all eight centers. This intercenter constraint is 
interpreted as a bandwidth limitation on intercenter com-
munication, and therefore on collaborative processing, 
within the entire cortex. The proposal is that (1) a shared 
communications infrastructure exists, (2) centers belong-
ing to the two independent networks must nevertheless 
communicate using the shared infrastructure, and (3) the 

Figure 18. (A) Underadditive activation in the dual-task con-
dition (from Just, Carpenter, Keller, et al., 2001). (B) The base 
dual-task model, with no intercenter resource constraints, shows 
additive capacity utilization. (C) The base model augmented with 
a single Cortex intercenter constraint shows underadditive ca-
pacity utilization.
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limited bandwidth of this infrastructure impairs collabora-
tive processing within the networks.

Empirical Evaluation
The eight intracenter resource supplies (one for each 

center) and, in the case of the augmented model, the single 
intercenter resource supply were chosen to maximize the 
R2 between the capacity utilizations of the model centers 
and the activations of the corresponding brain areas across 
the three conditions of the Just, Carpenter, Keller, et al. 
(2001) study. The capacity utilizations of contralateral 
homologue centers (e.g., Associative and RH Associa-
tive) were summed across hemispheres, corresponding 
to the aggregation of the fMRI data. In the base model, 
which has no intercenter constraint, the capacity utiliza-
tions of the associative and spatial centers (correspond-
ing to temporal and parietal areas, respectively) are addi-
tive from the two single-task conditions to the dual-task 
condition, as shown in Figure 18B. Thus, the base model 
fails to capture the critical underadditivity of the data, as 
a comparison of Figures 18A and 18B reveals (although 
the R2 between the model and data is still 79%, p , .02). 
Next, consider the augmented model, with its cortexwide 
intercenter constraint. The capacity utilizations of its as-
sociative and spatial centers across the three conditions 
are shown in Figure 18C. Unlike the base model, the aug-
mented model displays underadditive capacity utilizations 
in the dual-task condition. It also fits the fMRI data quite 
well, both in the absolute sense of variance accounted for 
(R2 5 95%, p , .01). These simulations suggest that in-
tercenter resource constraints are necessary for account-
ing for the underadditive activations observed in some 
studies of complex dual-tasking.

Sensitivity Analysis
The superior fit of the augmented model relative to the 

base model raises the question of which topological prop-
erty of the intercenter constraints is critical for producing 
the observed underadditivity; in other words, which subset 
of centers must draw on the same intercenter resource sup-
ply (or supplies)? A sensitivity analysis was performed in 
order to answer this question. Four alternative augmented 
models were constructed, each possessing different inter-
center constraints, and therefore making a different claim 
about the limited-bandwidth communications channels 
that support collaborative processing.

1. Domain-based intercenter constraints. Intercenter 
constraints might apply to sets of cortical areas specialized 
for common task domains, such as the linguistic domain. 
Therefore, a linguistic intercenter constraint was imposed 
on centers corresponding to areas that perform language 
processing (bilateral posterior STG/MTG and IFG), and a 
spatial intercenter constraint was imposed on centers cor-
responding to areas that perform controlled visuospatial 
processing (bilateral DLPFC and SPL/IPS).

2. Hemisphere-based intercenter constraints. An inter-
center constraint might apply to each cortical hemisphere. 
Therefore, a left-hemisphere intercenter constraint was de-
fined for centers corresponding to left-hemisphere areas 

(left IFG, posterior STG/MTG, DLPFC, and SPL/IPS), 
and a right-hemisphere intercenter constraint was defined 
for centers corresponding to right-hemisphere areas (right 
IFG, posterior STG/MTG, DLPFC, and SPL/IPS).

3. Lobe-based intercenter constraints. An intercenter 
constraint might apply to each lobe of the cortex. There-
fore, a frontal intercenter constraint was defined for cen-
ters corresponding to frontal lobe areas (bilateral DLPFC 
and IFG), a temporal intercenter constraint was defined 
for centers corresponding to temporal lobe areas (bilateral 
posterior STG/MTG), and a parietal intercenter constraint 
was defined for centers corresponding to parietal lobe 
areas (bilateral SPL/IPS).

4. Posterior–anterior intercenter constraints. Separate 
intercenter constraints might apply to posterior and an-
terior areas. Therefore, a posterior intercenter constraint 
was defined for centers corresponding to parietal and tem-
poral areas (bilateral posterior STG/MTG and SPL/IPS), 
and an anterior intercenter constraint was defined for 
centers corresponding to frontal areas (bilateral DLPFC 
and IFG).

Each alternative augmented model was fit to the Just, 
Carpenter, Keller, et al. (2001) data. Specifically, intra-
center and intercenter resource capacities were chosen 
that maximized the R2 between the capacity utilizations 
of the model centers and the activations of the correspond-
ing cortical areas across the three conditions.

The first three alternative augmented models (domain, 
hemispheric, and lobe based) account for the fMRI data 
as well as, but no better than, the base model, which has 
no intercenter constraints, as is shown in Table 1. This 
suggests that the intercenter resource constraints of these 
alternative augmented models lack the critical topological 
property. By contrast, the posterior–anterior model fits 
the data as well as the original augmented model, which 
includes a single cortexwide intercenter constraint on 
the joint resource consumption of all eight centers; the 
R2 for the posterior–anterior model is 96%. The topologi-
cal property common to the posterior–anterior and cortex 
models but missing from the domain, hemispheric, lobe, 
and base models is a constraint on the joint resource con-
sumption of the associative and spatial centers—that is, of 
bilateral posterior STG/MTG and IPS/SPL. Note that this 
is not a matter of the best-fitting models having more free 
parameters; if this were the case, the lobe-based model, 
which posits three intercenter constraints, would account 
for the most variance. Rather, the posterior–anterior and 
cortex models provide the best accounts of the underaddi-
tive activations observed in this study of complex dual-
tasking because they force the temporal and parietal areas 
to use a shared resource (interpreted as the bandwidth of 
the communications link to the frontal areas).

Other Forms of Dual-Tasking
Various types of dual-tasking effects have been ob-

served in other studies. We briefly consider how 4CAPS 
might be related to these other effects. One such effect is 
 additivity—when activation during dual-tasking is the sum 
of the activations during single-tasking (see, e.g., Jaeg gi 
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et al., 2003). Another effect is overadditivity—when ac-
tivation during dual-tasking is greater than the sum of the 
activations during single-tasking (e.g., Herath, Klingberg, 
Young, Amunts, & Roland, 2001). Additivity and overadd-
itivity have been primarily observed in studies of executive 
function; these studies focused on the control mechanisms 
that support dual-tasking—such as task set switching, se-
lective attention, and working memory—which have been 
localized to prefrontal areas. The studies typically use 
relatively simple component tasks and examine the ex-
tent to which dual-tasking recruits prefrontal areas (e.g., 
D’Esposito et al., 1995). If the tasks are truly performed 
concurrently but are simple enough, the resource demands 
never exceed the shared resource supply; the dual task 
thus will not show underadditivity, and can be accounted 
for by a base model. If the dual tasks are brief enough to 
allow participants to use task switching, this enables the 
staggering of the demands on the shared resource over 
time, so that the limitations of the shared resource are not 
broached. If the tasks draw on the same underlying net-
works, overadditivity can occur, a phenomenon yet to be 
addressed by a 4CAPS model. As findings cumulate to 
indicate the range of effects of dual-tasking, the resource-
sensitive framework of 4CAPS provides a range of analytic 
tools for modeling a dual draw on resources.

VI. COMPARISON WITH OTHER 
COGNITIVE NEUROARCHITECTURES

This section compares 4CAPS with other cognitive neuro-
architectures that aim for similarly broad coverage of cogni-
tive psychology, neuropsychology, and neuroscience. The 
comparison reveals which operating principles are shared 
among different neuroarchitectures and which are unique 
to 4CAPS. The comparison also extends past the operating 
principles to more general neuroarchitectural issues.

Other Cognitive Neuroarchitectures
First, we briefly review three other cognitive neuro-

architectures proposed in the literature that support mod-
els of behavioral and brain imaging data. The first is the 
large-scale neural model developed by Horwitz and his 
colleagues (Horwitz, Friston, & Taylor, 2000; Horwitz & 
Tagamets, 1999). The basic computational element of this 
model is an excitatory–inhibitory neuronal pair, which 
is intended to correspond to a cortical hypercolumn. A 
9 3 9 grid of such elements constitutes a population, and 

one or more populations are used to model each brain 
area, which are defined at approximately the same spatial 
scale as 4CAPS centers (i.e., individual gyri and sulci). 
The individual neuronal elements are hand-configured to 
implement the functions attributed to them on the basis 
of electrophysiological considerations, particularly from 
single-unit recording studies of monkeys (see, e.g., Fu-
nahashi, Bruce, & Goldman-Rakic, 1990). Neuroana-
tomical considerations guide how neuronal elements are 
connected within each area and across different areas. To 
simulate the results of a neuroimaging study, the model is 
given the same stimulus or stimulus sequence that partici-
pants receive. The activities of the neuronal elements are 
aggregated over populations and convolved with a hemo-
dynamic response function to produce a predicted fMRI 
time series for each brain area, which is compared with the 
observed data. A large-scale neural model of the delayed-
match-to-sample task has simulated the observed activa-
tion patterns in V1/V2, V4, inferior temporal cortex, and 
prefrontal cortex (Tagamets & Horwitz, 1998) and has 
also been used to account for the results of a transcortical 
magnetic stimulation study (Husain et al., 2002).

Another cognitive neuroarchitecture with explanatory 
goals similar to those of 4CAPS is the synthetic PET 
framework developed by Arbib and colleagues (see, e.g., 
Arbib, Bischoff, Fagg, & Grafton, 1994). Synthetic PET 
models are cast at the same spatial scale as 4CAPS mod-
els, with components that correspond to brain areas such 
as PFC and IPS. Each brain area is modeled as an array 
of neural elements, and each element is modeled as a 
leaky integrator. The functional specializations attributed 
to neural elements are derived from single-unit record-
ing studies. Critical to synthetic PET is the notion of a 
schema, which is a collection of knowledge and skills that 
together implement a complex perceptual, cognitive, or 
motor function (Arbib, 2003). Each schema encompasses 
a number of disparate representations and processes, and 
its implementation is typically distributed over multiple 
brain areas. For example, the hand-shape recognition 
schema is distributed over a network of temporal areas 
that includes superior temporal sulcus, middle temporal 
gyrus, and medial superior temporal cortex. Conversely, 
each brain area contributes to multiple schemas. The dis-
tribution of a schema over multiple brain areas lends corti-
cal information processing its collaborative flavor. The ac-
tivation in a simulated brain area is computed by summing 
the activations of its individual neural elements.

The third cognitive neuroarchitecture we consider is 
ACT-R, which has been developed by Anderson and his 
colleagues (Anderson et al., 2004). They approach corti-
cal information processing from a direction opposite the 
one used in the large-scale neural model and synthetic 
PET. Rather than build from a biological foundation of 
anatomical, electrophysiological, and imaging studies of 
brain function, Anderson et al. retrofitted an existing cog-
nitive architecture to new results in cognitive neuroimag-
ing. ACT-R is a production system interpreter consisting 
of a set of modules. Each module maps to a different brain 
area and is defined at approximately the same spatial scale 
as 4CAPS centers. Each module implements one general 

Table 1 
Fit of the Base and Augmented Models to the  

Just, Carpenter, Keller, et al. (2001) Data

Number of
Intercenter

 Model  R2  Constraints  

Base 79% 0
Cortex intercenter 95% 1
Domain intercenters 79% 2
Hemispheric intercenters 79% 2
Lobe-based intercenters 79% 3

 Posterior–anterior intercenters  96%  2  
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of the sentence comprehension, TOL, mental rotation, and 
dual-tasking models derive. The first is that similar cogni-
tive functions are performed by multiple brain areas. Note 
that this is not a claim about distributed implementation; 
all neuroarchitectures agree that what are unitary cogni-
tive functions at the psychological level are realized at the 
cortical level by networks of collaborating brain areas. 
Rather, it is a claim about the redundancy of the neural 
implementation of cognitive functions.

The second operating principle unique to 4CAPS is 
that the computational power of individual cortical areas 
is limited. Cortical areas, like all biological systems, are 
subject to resource constraints, and these constraints help 
explain the patterns of activation observed in intact and le-
sioned brains as tasks become more difficult. 4CAPS ex-
tends the notion of intracenter resource constraints to that 
of intercenter resource constraints on the joint process-
ing of multiple brain areas, which are interpreted here as 
bandwidth limitations on communication across a shared 
infrastructure. This is a more molar view of communi-
cation than the point-to-point channels of the large-scale 
neural model and synthetic PET and the shared buffers 
of ACT-R—and also the only one capable of accounting 
for the underadditive activations observed under certain 
dual-tasking conditions (e.g., when performing two com-
plex tasks that rely on independent cortical networks; Just, 
Carpenter, Keller, et al., 2001).

The third operating principle that is unique to 4CAPS 
concerns the dynamic nature of collaborative processing. 
The activations of cortical areas fluctuate during the per-
formance of a difficult task, which can take many seconds 
(or longer). 4CAPS explains these fluctuations as the re-
sult of changing resource availability and the changing 
functional demands of task performance. There are four 
general cases.

1. Increasing task difficulty can result in increasing re-
source consumption in centers well-specialized for pend-
ing cognitive functions. This form of dynamic response 
was illustrated in Figure 5B above. An example was seen 
in the mental rotation model, in which the capacity utili-
zations of the spatial centers, which are well specialized 
for visuospatial processing, increase linearly with angular 
disparity, paralleling the activations observed in the cor-
responding parietal areas.

2. Increasing task difficulty can require a qualitatively 
different type of processing. This form of dynamic re-

function of a production systems interpreter, which trans-
lates to multiple domain-specific functions. There is a 
procedural module that selects which production rule to 
apply at each moment in time, a goal module that per-
forms goal management functions, a declarative memory 
module that stores episodic and semantic information, 
and a number of sensory and motor modules. The internal 
state of each module is summarized by the contents of 
its buffer. Because a buffer can hold just one chunk, and 
because modules communicate by inspecting each other’s 
buffers, ACT-R can be viewed as imposing a rudimen-
tary limitation on intermodule communication. ACT-R 
modules do not collaborate as true peers, but instead are 
controlled by the procedural module, which inspects the 
buffers of the other modules, matches the highest-utility 
production rule against their contents, and applies this 
rule, potentially changing these contents. The activity of 
a module, indexed by the degree to which its representa-
tions are being processed, is used to predict activation in 
the corresponding brain area, both in an average sense and 
(when convolved with a hemodynamic response function) 
over finer increments of time.

Shared and Distinguishing Operating Principles
Each cognitive neuroarchitecture can be evaluated on 

whether it does or does not possess each of the operating 
principles embodied in 4CAPS. This is shown in Table 2. 
Surprisingly, a number of operating principles are shared 
by all four neuroarchitectures, but the rest are unique to 
4CAPS. First, let us consider the shared operating prin-
ciples. All four neuroarchitectures claim that cognition is 
the product of multiple collaborating brain areas. All four 
also attribute multiple cognitive functions (or schemas in 
the case of synthetic PET) to each brain area, in contrast 
to a localist or modular scheme that is limited to a one-
to-one mapping. All four include constraints on interarea 
communication, although the nature of these constraints 
ranges from the limited pairwise connections of the large-
scale neural model and synthetic PET, to the limited buf-
fers of ACT-R modules, to the intercenter resource con-
straints of 4CAPS. Finally, all four use measures of the 
activity of model components to predict activation in the 
corresponding brain areas. These are the consensus oper-
ating principles of cortical information processing.

Next, consider the three operating principles that are 
unique to 4CAPS, and from which the empirical successes 

Table 2 
Operating Principles Instantiated by Competing Cognitive Neuroarchitectures

Large-Scale Synthetic
Operating Principle  4CAPS  Neural Model  PET  ACT-R

0. Multiple collaborating centers Yes Yes Yes Yes
1a. Multiple functions per center Yes Yes Yes Yes
1b. Multiple centers per function Yes No No No
2. Resource-constrained computation Yes No No No
3. Dynamic assignment Yes No No No
4. Bandwidth-limited communication Yes Yes Yes Yes
5. Capacity utilization  Yes  Yes  Yes  Yes
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level forms of cognition, such as language processing and 
complex problem solving. In contrast, the large-scale neu-
ral model and synthetic PET have been primarily shaped 
by the results of anatomical and physiological studies of 
primate brains; employ neuron-like computational ele-
ments (e.g., leaky integrators) and incorporate biological 
constraints such as the relative proportion of excitatory 
versus inhibitory connections between brain areas; and 
target low-level forms of cognition that are by no means 
unique to humans, such as grasping. The different empha-
ses of the two clusters result in complementary strengths 
and weaknesses. Although the computational sufficiency 
of 4CAPS and ACT-R in accounting for complex forms 
of cognition is relatively well demonstrated, it is an open 
question whether their hybrid computational mechanisms 
will allow for plausible neural implementations. Con-
versely, although the computational mechanisms of the 
large-scale neural model and synthetic PET are consistent 
with what is known about neural information processing, 
whether these mechanisms can scale to explain language 
processing, problem solving, mathematical reasoning, 
and other forms of complex cognition is also an open 
question.

A different clustering of the neuroarchitectures emerges 
when the natures of brain areas and the collaborative pat-
terns they enter into are considered. 4CAPS, the large-
scale neural model, and synthetic PET all share the view 
that each brain area is a full-fledged processor, a “dis-
tributed system in which storage and data processing are 
intertwined” (Arbib, 2003, p. 33). This view is uncontro-
versial in neuroscience. By contrast, ACT-R is composed 
of a number of modules, each implementing a restricted 
kind of functionality: The declarative memory module 
provides only storage, the procedural module provides 
only processing, and the goal module provides only con-
trol. This very different conception of the computational 
power of individual brain areas is the result of backward-
mapping a cognitive architecture that was originally de-
veloped with reference to the behavioral data of cognitive 
psychology. As a result, ACT-R posits a more question-
able mapping of cognitive functions to brain areas. A re-
lated difference between the other neuroarchitectures and 
ACT-R concerns the locus of control within large-scale 
cortical networks. According to 4CAPS, the large-scale 
neural model, and synthetic PET, brain areas can collab-
orate in a  peer-to-peer fashion, and control is therefore 
shared or heterarchical (see, e.g., Mesulam, 1990). In par-
ticular, 4CAPS posits that the matching and firing of pro-
ductions (evoking relevant processes when their enabling 

sponse, also illustrated in Figure 5B above, was exhibited 
by the TOL model, in which difficult problems require 
strategic problem solving, and hence increasing recruit-
ment of the executive centers specialized for plan articu-
lation and execution. This corresponded to the increasing 
activations observed in the corresponding cortical areas, 
right and left DLPFC.

3. If the difficulty of a task is increased to the point at 
which the resources of centers well-specialized for pend-
ing cognitive functions are exhausted, centers with sec-
ondary specializations for these functions (and possessing 
adequate resources) will be recruited into the large-scale 
cortical network. This form of dynamic response was il-
lustrated in Figure 5C above. An example occurred in the 
sentence comprehension model, in which increasing syn-
tactic complexity produced resource shortfalls in the well-
specialized centers corresponding to Wernicke’s and Bro-
ca’s areas, causing their less-specialized right-hemisphere 
homologues to be recruited into the language network.

4. The occurrence of a lesion that drastically reduces the 
resources of centers well-specialized for pending cognitive 
functions will prompt recruitment of centers with second-
ary specializations for those functions (and possessing ad-
equate resources). This form of dynamic entry, illustrated 
in Figure 5D above, was exhibited by the sentence com-
prehension model: Lesioning the Structure-Builder center 
to simulate the effect of a lesion to the corresponding cor-
tical area (Broca’s) resulted in the early recruitment of the 
RH Structure-Builder center into the large-scale network, 
matching the recruitment of the right-hemisphere homo-
logue of Broca’s area by a stroke patient.

The 4CAPS allocation algorithm, which assigns cogni-
tive functions to centers at each point in time, provides a 
unified account of all four dynamic changes to the topolo-
gies of large-scale cortical networks.

Other Dimensions of Comparison
The various neuroarchitectures can be compared on the 

basis of other properties than the 4CAPS operating prin-
ciples, as shown in Table 3. This comparison reveals two 
different clusterings of the neuroarchitectures. The first 
groups 4CAPS and ACT-R together, in opposition to the 
large-scale neural model and synthetic PET. 4CAPS and 
ACT-R share a number of points in common: Both have 
their origins in cognitive science; focus on the functional 
decomposition of cognition; employ hybrid computa-
tional mechanisms that combine symbolic mechanisms, 
such as variable binding, and connectionist mechanisms, 
such as activation-based representations; and target high-

Table 3 
Dimensions of Variation Between Competing Cognitive Neuroarchitectures

Large-Scale
Operating Principle  4CAPS  Neural Model  Synthetic PET  ACT-R

Empirical basis Cognitive/ Biological/ Biological/ Cognitive/
functional structural structural functional

Computational mechanisms Hybrid Neural Neural Hybrid
Level of phenomena High Low Low High
Centers full-fledged processors? Yes Yes Yes No
Control  Heterarchical  Heterarchical  Heterarchical  Hierarchical
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human brain.5 Such data can be used to further test the 
bandwidth limitations interpretation adopted here, par-
ticularly in certain patient populations. For example, Just, 
Cherkassky, Keller, and Minshew (2004) initially pro-
posed an underconnectivity account of autism based on 
findings of lower functional connectivity in that popula-
tion than in matched controls. More recent studies have 
demonstrated a correlation across participants with au-
tism between their frontal–parietal functional connectiv-
ity and properties of their anatomical connectivity (i.e., 
the size of the relevant portion of the corpus callosum; 
Just, Cherkassky, Keller, Kana, & Minshew, 2007; Kana, 
Keller, Cherkassky, Minshew, & Just, 2006). These find-
ings point to intercenter connectivity, both functional and 
anatomical, as a key part of the infrastructure of cogni-
tion. For example, if people with autism have reduced 
intercenter communication, they should be particularly 
impaired in dual- tasking versus single-tasking—an in-
ference that has already been empirically demonstrated 
(García-Villamisar & Della Sala, 2002). This general 
approach—understanding “disconnection syndromes” 
as reductions in intercenter communications resources—
naturally complements the understanding of the cogni-
tive impairments following focal lesions as reductions 
in intracenter computational resources, as we illustrated 
earlier in the sentence comprehension model.

More complex modeling of intercenter constraints 
could take into account the hierarchical organization of 
the cortex. For example, the frontal lobe is composed of 
IFG and other areas; IFG is composed of BA 45 (pars 
triangularis) and other areas; and so on. If resources are 
shared within some such hierarchy of centers such that 
subordinate centers draw their resources from superordi-
nate centers, this can then be modeled by nested intercen-
ter resource constraints.

Dynamic Assignments to Centers
Recall that 4CAPS assigns responsibility for cogni-

tive functions to centers in a way that minimizes overall 
resource consumption while satisfying as many resource 
demands as possible. 4CAPS currently casts the assign-
ment problem as a linear programming problem and 
solves it “centrally” using the simplex algorithm. Solv-
ing the assignment problem in a centralized manner, how-
ever, seems neurally implausible. Therefore, an avenue 
for future research is to replace the present scheme with 
a more “local” scheme in which centers communicate 
with other centers in the same “neighborhood,” taking 
on and passing off pending cognitive functions as their 
available resources wax and wane. A number of candidate 
schemes have been developed by operations and computer 
science researchers interested in the parallel solution of 
linear programming problems (Alon & Megiddo, 1994; 
Lustig & Rothberg, 1996; Maros & Mitra, 2000) and by 
artificial intelligence researchers interested in cooperative 
computation by resource-constrained agents (Wellman, 
1993; Wooldridge & Dunne, 2006). A more distributed 
scheme for responsibility assignment would be more neu-
rally plausible.

conditions arise) is a fundamental capability of cortical 
systems, distributed throughout the cortex. By contrast, 
in ACT-R, the procedural module (localized to a subcorti-
cal area, the basal ganglia) coordinates the interaction be-
tween the other modules, first accessing their buffers, then 
matching the production with the highest utility against 
their chunks, and finally firing this production. This hi-
erarchical control scheme is another outcome of ACT-R’s 
origins in symbolic cognitive science.

Summary
In comparison with competing cognitive neuro-

architectures, 4CAPS makes three unique claims: that 
similar functions are implemented by different brain areas, 
that computation with individual brain areas is resource 
constrained, and that the pattern of collaborative process-
ing is a dynamic function of changing resource availabil-
ity and changing functional demands. These operating 
principles are critical for the ability of 4CAPS models to 
account for the neuroimaging data on the complex cogni-
tion of normal adults and patients with focal lesions. How-
ever, these differences should not overshadow the many 
commonalities between 4CAPS and the large-scale neural 
model, synthetic PET, and ACT-R, which together may 
indicate a scientific consensus about neuroarchitecture.

GENERAL DISCUSSION

We conclude with a discussion of several insights on 
related research topics that follow from the new theory 
and are not readily visible from other perspectives.

Fluid Intelligence
It has been tempting in the past to attribute individual 

differences in fluid intelligence to supervisory processes 
associated with the prefrontal cortex (see, e.g., Duncan 
et al., 2000). However, 4CAPS suggests that fluid intel-
ligence is due not only to the capabilities of individual 
areas (in the prefrontal cortex or elsewhere), but also to 
the dynamic flexibility with which these areas assemble 
themselves into collaborative networks in response to a 
novel cognitive challenge. In the 4CAPS perspective, the 
fluidity of intelligence lies not just in flexible supervisory 
software, but also in an adaptive organization of the un-
derlying neural hardware. From this perspective, it is not 
surprising that the volumes of white and gray matter in the 
brain are correlated with g to similar degrees (Posthuma 
et al., 2002). Intelligence lies not only in the nodes, but 
also in the connections of the large-scale networks.

Intercenter Resource Constraints
The interpretation of intercenter resource constraints 

adopted here—as bandwidth limitations on intercen-
ter communications—can be evaluated further. The 
measurement of functional connectivity can be related 
to various measures of structural connectivity, such as 
white matter morphometry and diffusion tensor imag-
ing (DTI) of anatomical connectivity, that together docu-
ment the communications infrastructure of the thinking 
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larger changes in the behavioral measure of learning. The 
implication is that repeated coactivation of centers leads 
to more efficient forms of collaboration between them. An 
avenue for future research is therefore to formulate learn-
ing algorithms that operate at the intercenter level.

Another sense of learning is the induction of new 
strategies. 4CAPS suggests a new mechanism for strat-
egy  innovation—namely, the dynamic formation of novel 
and noncanonical large-scale networks. This can occur 
when there is an unusual shortfall of available resources, 
whether because of lesion or concurrent load. It can also 
occur when there is an unusual surplus of available re-
sources, whether because of development or the reduction 
of a typical load. In both cases, a novel noncanonical net-
work can be assembled to perform the task at hand—one 
composed of different brain areas, which therefore imple-
ments a new cognitive algorithm. Modeling the induction 
of new strategies as a result of resource shortfalls and sur-
pluses is another avenue for future research.

Conclusion
We conclude with the observation that, despite deal-

ing with neuroimaging data, this article contains no im-
ages depicting brain activation. Instead, there are many 
graphs depicting the functional relation between some 
facet of brain activation (such as its intensity level) and 
some hypothesized property of the underlying cognitive 
processing. The operating principles embodied in 4CAPS 
enable progress from visual depictions of activation phe-
nomena (which are undeniably a stunning accomplish-
ment of science and technology) to formal accounts of the 
mechanisms underlying the phenomena. This approach 
represents a first step in understanding how resource con-
straints and system dynamics shape cortical and cognitive 
information processing. Although the primary responsi-
bility of a scientific theory is to the data, an important 
additional purpose here is to provide a conceptual frame-
work for bringing together the neuroscientific and psy-
chological levels of explanation. In this regard, 4CAPS 
provides a first-order description of the neuroarchitecture 
of cognitive information processing and attempts to illu-
minate the interface between the brain and the mind.
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1. Throughout this section, we will use the term L. STG (left superior 
temporal gyrus) to denote the posterior temporal area of activation dur-
ing sentence comprehension, which actually includes not only L. STG, 
but also the left middle temporal gyrus and the sulcus between them; we 
will also use the term in this sense interchangeably with Wernicke’s area. 
We note that the latter term has not typically been defined elsewhere 
either precisely or consistently. We will also use the term L. IFG (left 
inferior frontal gyrus) interchangeably with Broca’s area.

2. The iterativeness of a production can be viewed as a function of its 
weight, which specifies a multiplier (usually fractional) of the amount of 
activation it directs to its target declarative element per cycle. The larger 
the weight, the more activation directed per cycle, and thus the fewer 
cycles required to raise the activation level of the target element above 
threshold. In the interest of parsimony, all productions in all models were 
assigned the same weight, one large enough that productions required 
only a single cycle to raise the activations of their target elements above 
threshold. This has the advantage of yielding a clear interpretation of the 
simulation cycle counts reported below as the minimum number of pro-
cessing cycles (a proxy for processing times) required to perform tasks. 
As production weights are reduced, the number of processing cycles to 
perform a task or process increases approximately linearly. There are a 
number of theoretically interesting consequences of increased iterative-
ness. One is cascaded processing (McClelland, 1979). Another is that 
spreading a process over several iterations provides an opportunity for 
other processes to interact with it. Documenting these consequences of 
iterative processing is beyond the scope of this article.

3. The details of how declarative elements and productions aggregate 
into cognitive functions are available in code and documentation on the 
4CAPS Web site. Briefly, each declarative element is of a particular class 
(e.g., a phrase). Declarative elements of the same class and productions 
that process elements of that class (e.g., Determiner 1 Noun  NP) 
together constitute a cognitive function (e.g., parsing). The specializa-
tion of a center for a cognitive function refers to the efficiency with 
which declarative elements of the associated class are maintained and 
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temporal mapping consistent with other production system models. Such 
a decomposition should affect neither the model’s fit to the human solution 
time data nor its fit to the brain activation data.

5. It is important to note that the assumption of extensive functional 
connectivity among centers does not require extensive anatomical con-
nectivity. In particular, there is no need to postulate a number of point-
to-point anatomical connections quadratically related to the number of 
brain areas. Just as a huge number of postal addresses are effectively 
connected by a relatively lean physical infrastructure, a large number 
of functional connections between brain areas can be efficiently imple-
mented by a relatively small number of neural pathways arranged quasi-
hierarchically (e.g., with the corpus callosum serving as a “trunk” line).
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processed by productions. The 4CAPS architecture knows about classes 
(and declarative elements and productions), not cognitive functions; the 
latter are an abstraction we adopt here to simplify the description of the 
architecture and its models.

4. Historically, the temporal mapping between human response times and 
the processing times of production system models (whether CAPS, ACT, 
Soar, or EPIC) is 25–100 msec/cycle, with a geometric mean of 50. The 
sentence comprehension model is in this range: The temporal mapping for 
Figure 8 is 60 msec/cycle. The mental rotation model described in the next 
section is also in this range, since the temporal mapping for Figure 17A 
is 30 msec/cycle. However, the TOL model is outside this range, with a 
temporal mapping for Figure 16A of 556 msec/cycle. This is because the 
TOL model is written at a coarser grain size than the other 4CAPS models. 
In principle, the logic of each TOL production could be decomposed into a 
sequence of finer-grained productions, and such a model would produce a 


