
RESEARCH ARTICLE

Identifying Autism from Neural
Representations of Social Interactions:
Neurocognitive Markers of Autism
Marcel Adam Just1*, Vladimir L. Cherkassky1, Augusto Buchweitz1,3, Timothy A.
Keller1, Tom M. Mitchell2

1. Department of Psychology and Center for Cognitive Brain Imaging, Carnegie Mellon University, Pittsburgh,
Pennsylvania, United States of America, 2. Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania, United States of America, 3. Brain Institute of Rio Grande do Sul (InsCer/RS),
Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil

*just@cmu.edu

Abstract

Autism is a psychiatric/neurological condition in which alterations in social

interaction (among other symptoms) are diagnosed by behavioral psychiatric

methods. The main goal of this study was to determine how the neural

representations and meanings of social concepts (such as to insult) are altered in

autism. A second goal was to determine whether these alterations can serve as

neurocognitive markers of autism. The approach is based on previous advances in

fMRI analysis methods that permit (a) the identification of a concept, such as the

thought of a physical object, from its fMRI pattern, and (b) the ability to assess the

semantic content of a concept from its fMRI pattern. These factor analysis and

machine learning methods were applied to the fMRI activation patterns of 17 adults

with high-functioning autism and matched controls, scanned while thinking about 16

social interactions. One prominent neural representation factor that emerged

(manifested mainly in posterior midline regions) was related to self-representation,

but this factor was present only for the control participants, and was near-absent in

the autism group. Moreover, machine learning algorithms classified individuals as

autistic or control with 97% accuracy from their fMRI neurocognitive markers. The

findings suggest that psychiatric alterations of thought can begin to be biologically

understood by assessing the form and content of the altered thought’s underlying

brain activation patterns.
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Introduction

Psychiatric disorders of thought are usually characterized and diagnosed on the

basis of clinical assessment of an individual’s verbal and physical behavior. This is

the conventional way to assess a thought disorder. However, recent advances in

brain reading have made it possible to identify neurocognitive representations

based on the underlying brain activation patterns assessed with fMRI [1–5]. These

innovations have advanced from merely associating an activation pattern with a

particular thought to decomposing the activation pattern into its neural and

psychological components. For example, the activation pattern corresponding to

the thought of a banana consists of components representing how one holds a

banana (indicated in several premotor areas) and how one eats a banana

(represented in eating-related areas). Another example is that the thought of an

emotion such as sadness can be identified in terms of the neural representation of

its valence, degree of arousal, and sociality [3]. Thus it has become possible to

assess the content of a thought in neurotypical populations.

In our study, this approach was applied to characterize the altered neural

representation of social concepts in autism, known to be disordered in terms of

psychiatric diagnosis. If certain types of social concepts are altered in autism, it

may be possible to (a) detect the alterations and possibly interpret them as

diagnostic of autism; and (b) understand the biological and psychological nature

of the alterations in terms of the underlying dimensions of neural representation;

and (c) make use of the understanding to develop therapies that ameliorate the

alteration. Furthermore, if the approach is successful with respect to autism, it

may hold promise for application to other psychiatric disorders.

One of the largest challenges in autism research is to determine the relation

between the psychological alterations in autism (assessed in behavioral and

psychiatric studies) and the neural alterations (assessed in neuroscience and

particularly brain imaging studies). Because the social alterations are often the

most prominent ones in autism, fMRI studies of autism have investigated the

relation between brain and behavior with respect to several different types of

social processing. One of the earliest-studied social functions investigated with

fMRI was face perception, during which it was found that the fusiform face area (a

brain region associated with the processing of faces) activated abnormally in

autism [6]. A second type of social task in which altered activation was found in

autism was in Theory of Mind processing in which participants must understand

the mental state of another individual (and in which there is altered activation in

autism in the medial frontal and temporoparietal junction regions) [7].

A third type of autism alteration involved in social processing (and arguably the

most central one) concerns the altered conception of self (see Uddin [8] for a

review). The altered conception of self in autism is at the focus of the current

study. Since its first description by Kanner [9], autism has always been

prominently associated with a disruption of the social relation between self and

others. In fact, the word autism stems from the Greek autos meaning self.

Although self representation may have several types of components, such as visual
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self-recognition and perspective, the facet of self that seems most altered in autism

is the relating of oneself socially to others. Individuals with autism exhibit atypical

social behavior, manifested as disproportionate self-focus in social interaction

with others. Hence the current study investigated a number of social (dyadic)

interactions, using a neurosemantic paradigm in which participants are asked to

think about a concept such as to insult, while their brain activation was assessed

with fMRI.

Several fMRI studies of autism that have involved self-related cognition have

found disruption of the brain activation in midline cortical structures

(ventromedial prefrontal, middle and posterior cingulate), as summarized in a

recent review [10]. One example is that in participants with autism there is a

failure to reduce the activity in midline structures during the performance of a

cognitive task [11], which has been attributed to a reduction of self-referential

processing in the resting state in autism [12]. Another example of unusual self-

related disruption in children with autism is the use of the pronoun you to refer to

themselves, echoing the use of that pronoun by others to refer to the child, as first

noted by Kanner [9]. This language behavior is ascribed to an errorful assessment

of the relation between the self and another person. Consistent with Kanner’s

observations, an fMRI study of pronoun processing in adult participants found

diminished functional connectivity in autism between a frontal region (right

anterior insula) and the precuneus (a posterior midline) region as well as altered

activation levels in the precuneus [13]. Several other studies have found the

precuneus to be involved in the representation of self [14, 15, 16, 17, 18]. Taken

together, these types of findings indicate disruption of self-related processing in

autism associated with the precuneus and frontal regions.

Findings of mean differences between autism and control groups in brain

anatomy or brain activity have led more recently to classification studies in which

participants are automatically (i.e. using an algorithmic statistical technique)

classified as autistic or control based on such measures [19, 20, 21, 22]. Based on

the structural grey matter anatomy measures, it was possible to classify the group

membership with 85% accuracy [19]. With the voxel-based morphometry

approach, the accuracy was 90% [20]. One study performed autism membership

classification based on resting state connectivity data, producing an accuracy of

79% (and for the sub-group under 20 yrs, 91%) [21], whereas another study

obtained an accuracy of 96% [22]. There is apparently something distinctive

about the brain structure and brain activation in autism. However, neither of

these approaches relates a brain property to a specific type of concept or thought

that is altered in autism. The current study examines whether such classification is

possible based on the neural representations of interpersonal social interactions,

which might be expected to be altered in autism. In effect, the study seeks specific

neurocognitive disruptions directly related to thought alterations and not simply

biological markers of the thought disorder. We asked whether it is possible to

distinguish autism from control participants based on their neural activation

patterns during their consideration of various social interactions, examining

whether the self components of social representations are altered in autism.
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In addition to relating altered neural activation patterns to social concepts, the

study attempted to determine what anatomical alterations in autism might be

associated with the psychological alterations in the conception of self. One theory

of autism relates the disorder’s behavioral and brain activation symptoms to

altered frontal-posterior anatomical connectivity in the cortex, compromising the

communication bandwidth between frontal and posterior areas [23]. The white

matter tract that provides such connectivity between some of the main frontal and

posterior midline regions involved in the representation of self is the cingulum

bundle, whose structural properties can be measured noninvasively using

magnetic resonance-based imaging of the diffusion of water molecules. An

alteration in the representation of self could be due to the quality of this white

matter tract. An a priori hypothesis was that the degree of alteration in the

representation of self in individuals with autism would be related to the quality of

their cingulum bundle. To examine this relation, diffusion images of this tract

were obtained, in addition to the fMRI activation evoked by thoughts of various

social interactions.

Another hypothesis was that the degree of alteration in the representation of self

in individuals with autism would be related to behavioral measures of various

social abilities, such as face processing and Theory of Mind (c.f. [12]). To test this

hypothesis, appropriate neuropsychological measures were acquired for partici-

pants with autism.

Autism is rightly considered to be a heterogeneous disorder, with suggestions

made that it be referred to as ‘‘the autisms’’ [24]. There are anecdotal comments

that every person with autism is autistic in their own way. Although autism is

undoubtedly heterogeneous, a striking finding in brain reading studies of

neurotypical people is the high degree of commonality (homogeneity) of neural

representations of concepts across individuals. A classifier trained to identify the

thoughts associated with physical objects like a banana from the neural activation

patterns of a group of participants can then identify, with reasonable accuracy, the

thoughts of a new participant whose data were not included in the training [2].

This activation commonality probably arises because of the commonalities in the

structure, function, and experience of human brains as they process information

related to physical objects. But how would a psychiatric or neurological disorder

affect the commonality among the members of the affected population,

particularly in a domain of thought that is altered in the disorder? Given the

apparent heterogeneity of autism, should there thus be less commonality among

people with autism than among people without autism when they are thinking

about social concepts? That is, if autism entails altered conceptions of social

interactions, are the alterations heterogeneous across people with autism or is

there a commonality? New machine learning methods allow a comparison of the

commonality within the autism and the control groups.

The central issue remains whether it is possible to identify a participant as

autistic, not just on the basis of a fortuitous statistical relation, but on the basis of

some fundamental alteration of the brain activity that underpins particular types

of thought that are among the defining characteristic of the disorder.
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Below we first apply factor analysis to reduce the dimensionality of the brain

activation evoked by the various social interactions. Then we perform

classification of the multivoxel patterns that correspond to particular social

interactions in order to identify the interaction and to distinguish the neural

patterns of the two groups. The advantages of the approach are that it 1. focuses

on the representations of social interactions, which are likely to be altered in

autism and which like other concepts, are neurally represented by multiple voxels

in multiple regions, and 2. is capable of detecting group differences in the

activation patterns of multiple voxels in multiple regions.

Materials and Methods

The study acquired fMRI-measured brain activation patterns of 17 young adults

diagnosed with high-functioning autism and 17 age and IQ-matched control

participants as they thought about the referent of 8 social interaction verbs

(compliment, insult, adore, hate, hug, kick, encourage, humiliate), considered from

two perspectives (either the agent of the action or the recipient), for a total of 16

social interaction items. There were 6 presentations of such 16-item blocks.

Ethics statement

The study protocol was approved by the University of Pittsburgh and Carnegie

Mellon University Institutional Review Boards. All participants gave their

informed written consent.

Participants

The participants’ demographic information is shown in Table 1. The diagnosis of

autism was established using the Autism Diagnostic Observation Schedule (ADOS;

[25]), the Autism Diagnostic Interview-Revised (ADI-R; [26]) using DSM IV

criteria and confirmed by expert clinical opinion. All participants were required to

be in good medical health. Seven of the autism participants took medications on

the day of the scan (six of these taking selective serotonin re-uptake inhibitors,

three taking ADHD medications, two taking blood pressure medications, and

three taking one of prostate enlargement, hypothyroidism, or allergy medication).

Potential participants with autism were excluded if they had an identifiable cause

for their autism such as fragile-X syndrome, tuberous sclerosis, or fetal

cytomegalovirus infection or were found to have evidence of prematurity, birth

asphyxia, head injury, or a seizure disorder. Exclusions were based on neurologic

history and examination, physical examination, and chromosomal analysis or

metabolic testing, if indicated. The control participants were community

volunteers and were group-matched to the participants with autism on age,

gender, race, and all three IQ scores, Verbal (VIQ), Performance (PIQ), and Full-

scale (FSIQ) as determined by administration of the Wechsler Abbreviated Scales

of Intelligence (WASI; [27]). Potential control participants were screened by
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questionnaire, telephone, face-to-face interview, and observation during initial

testing and were excluded if they had a current or past history of prematurity,

psychiatric and neurologic disorders, birth injury, developmental delay, school

problems, acquired brain injury, learning disabilities, or medical disorders with

implications for the central nervous system. Exclusionary criteria also included a

history in first degree relatives of autism, developmental cognitive disorder,

affective disorder, anxiety disorder, schizophrenia, obsessive compulsive disorder,

or other neurologic or psychiatric disorder thought to have a genetic component.

One of the control participants took allergy and asthma medication and another

participant took an antibiotic on the day of the scan.

Handedness was determined with the Lateral Dominance Examination from

the Halstead-Reitan Neuropsychological Test Battery [28]. Thirteen members of

each group were right-handed; two of the autism and none of the control

participants were female.

Prior to in-scanner testing, each participant was familiarized with the task, and

used an MRI simulator scanner to acclimate themselves with the scanner

environment. The 34 included participants were tested in two epochs. In the first

epoch, 9 participants with autism and 9 controls were scanned using a Siemens

Allegra scanner, with 21 additional participants excluded from the analysis (as

described below). Because the yield was low (18/39) in the first epoch largely due

to excessive head motion, the pre-scanning training to reduce head motion was

substantially enhanced in the second epoch. The yield for the second epoch (16/

20) was greatly improved. In the second epoch, 8 autism and 8 control

participants were scanned using a Siemens Verio scanner with 4 additional

participants excluded (using the same criteria).

The data from the 25 excluded participants (12 with autism and 13 controls)

had been affected by either excessive (above 3.5 mm) head motion (6 with autism

and 3 controls) or lack of attention to the stimulus in a substantial number of

trials (6 with autism and 10 controls). Participants in such studies comment that

occasionally their mind wanders when processing some items, and we have

previously found such inattention to be characterized by an abnormal occipital

activation time course. Consequently, participants in whom the abnormality

(measured as a low correlation with a typical occipital activation time course) was

Table 1. Age, IQ, handedness, and gender of the participants.

Autism Mean (Range, SD) Control Mean (Range, SD) t(32) p

Age (years) 25.6 (16–38, 6.7) 23.4 (17–36, 5.2) 1.06 0.30

VIQ 113.8 (87–132, 14.7) 111.4 (94–134, 9.5) 0.57 0.57

PIQ 112.6 (92–131, 11.8) 113.8 (104–135, 9.3) 0.34 0.74

FSIQ 114.9 (92–132, 13.4) 114.2 (100–139, 9.5) 0.18 0.86

Handedness 13 Right: 4 Left 13 Right: 4 Left

Gender 15 Male: 2 Female 17 Male: 0 Female

Note: VIQ5Verbal IQ; PIQ5Performance IQ; FSIQ5Full-Scale IQ.

doi:10.1371/journal.pone.0113879.t001
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frequent (occurring in more than 70% of the items) were excluded. (Calculations

are shown in File S1).

Image acquisition

Functional images were acquired on a Siemens Allegra 3.0T or a Siemens Verio

3.0T MRI scanner (Siemens, Erlangen, Germany) using the same gradient echo

EPI sequence with TR51000 ms, TE530 ms and a 60˚flip angle. Seventeen 5-mm

thick oblique-axial slices were imaged with a gap of 1 mm between slices. The

acquisition matrix was 64664 with 3.12563.12565 mm voxels. High angular

resolution diffusion images (HARDI) were acquired using a diffusion-weighted,

single-shot, spin-echo, EPI sequence (TR55300 ms) and processed using FSL

tools and diffusion toolkit software [29]. (See File S1 for details).

Stimuli and paradigm

The stimulus set of eight verbs referring to interpersonal actions (compliment,

insult, adore, hate, hug, kick, encourage, humiliate) was presented one at a time,

with instructions to think about the nature of the interaction from either the

perspective of the agent (e.g., the participant insulting someone else) in a dyadic

situation, or from the perspective of the recipient (e.g., being insulted by someone

else), for a total of 16 different social interactions. Each block of 16 interactions (8

verbs 6 2 perspectives) was presented 6 times. In each block, the two perspectives

were presented separately and always in the same order for a given participant

(and balanced across participants), while the 8 verbs within each perspective were

presented in different random orders. There was a 10 s rest interval between

blocks and also between perspectives within a block. The mean interval between

the two consecutive presentations of the same verb was 66 s, and the maximum

interval was 115 s.

Each stimulus verb was presented on the screen for 3 s, followed by a 4 s rest

period, during which the participants were instructed to fixate on an X displayed

in the center of the screen. There were four additional presentations of a fixation

condition X, 24 s each, distributed across the session to provide a baseline

measure of activation.

Participants were asked to think about the most salient properties of the

interaction that the verbs described, for example, whether the action is intentional

or not, the reaction it may evoke, and the context in which it occurs, to encourage

consideration of multiple attributes of the dyadic social interaction. Participants

were asked to think of the same attributes each time they saw a given verb. To

encourage the consideration of a consistent set of attributes, prior to the scanning

session participants were asked to write down the attributes of each verb in each

mode/role. However, there was no attempt to induce consistency across

participants.

Neurocognitive Markers of Autism
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Neuropsychological tests

To assess the social processing abilities of the autism participants, the Benton

Facial Recognition Test [30], WMSIII Faces II [31], and Reading the Mind in the

Eyes [32] were administered.

fMRI processing

The fMRI data were preprocessed with SPM2 [33]. For each participant,

functional images (about 15,000 voxels) linked to every instance of the 16 social

interaction terms were computed and served as input data for the following

analyses (see File S1 for further details of fMRI data preprocessing).

Factor analyses

To assess the neural representation of social interactions, a two-level, exploratory

factor analysis (FA), as described in previous research [2], was applied separately

for each group. This dimension reduction approach aims to identify the relatively

sparse set of cortical regions and voxels whose neural activity varies reliably across

the set of stimulus items, while representing the relevant neural activity for each

participant in a way that allows multiple participants’ data to be aligned and

compared. The choice of parameter values in the procedure was determined by

search and convergence in several previous studies. For example, the total number

of voxels ultimately involved in the analysis, 135, is small, relative to the entire

brain volume. However, our previous studies showed that increasing this number

failed to substantially improve the classification accuracy and at some point the

accuracy begins to decrease with additional voxels [2]. Several of the arbitrary-

looking procedures below are the result of optimizations performed in several

previous studies.

The details of the factor analysis procedures (starting with the initial selection

of 135 voxels per participant and ending with the uncovering of 4 major factors

per group, together with the associated brain locations), are reported in the File

S1.

The FA procedure for a group of participants is illustrated in Figure 1. The 135

most stable voxels distributed across 5 brain areas were algorithmically selected for

each participant. The first-level FA was performed separately for each participant,

resulting in 7 first level factors (Fa-Fg, Figure 1). (The number of first-level

factors was fixed at 7, which was the modal number of factors for all participants

based on the Kaiser criterion). These factors were characterized by their vector of

scores for the 16 items and their associations with specific subsets of the initially

selected 135 voxels. The goal of the first-level FA was to find the participant-

specific distributed brain networks involved in the representation of social

interactions.

The second, group-level FA then attempted to find the components of these

networks that were common across participants within each group. The group-

level factors (GF1–GF4, Figure 1) were also characterized by their vector of scores

Neurocognitive Markers of Autism
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for the 16 items and their associations with specific subsets of the first-level

factors, and, through these associations, to subsets of originally selected voxels.

The spatially contiguous clusters of these voxels (factor-associated brain locations

in Figure 1) defined the brain locations of the neural representation components

corresponding to the group factors. The number of factors in the group-level FA

was limited to 4, beyond which they were not easily interpretable, and the

Figure 1. Schematic diagram of the two-level exploratory factor analysis procedure. The first level factor
analyses are performed separately for participants 1–13. In these analyses, the activation levels of 135 voxels
(marked as red, green, and blue circles for the 3 participants) distributed throughout the brain are expressed
via 7 factors (Fa-Fg), and some (but not all) of the voxels are linked to these factors. The second, group-level
FA in turn expresses the 1367 first-level factors in terms of 4 group factors (GF1–GF4). For each of these
factors, the originating voxels are spatially clustered. A cluster of such voxels (characterized as a sphere)
contains voxels that were initially selected from many (typically all) of the participants. The six largest spheres
per factor were treated as the factor-associated brain locations.

doi:10.1371/journal.pone.0113879.g001
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locations were limited to the 6 largest clusters (characterized as spheres) per

factor.

The only outcome of the factor analysis that was used in the subsequent

machine learning (described below) was the set of locations (centers and radii) of

the factor-related spheres. The features (voxels) used in the classification came

exclusively from these factor-based spheres (but were subject to additional

criteria).

Machine learning analyses

Gaussian Naïve Bayes (GNB) classifiers with factor-based features were used to

classify participants’ group membership and separately, to identify the 16 social

interactions (see File S1 for the details of machine learning computations).

1. Group membership classification

This classification was performed separately for each participant, training the

classifier on the remaining participants, and deriving the features from the

locations of the semantic factors that emerged from the factor analyses.

Specifically, the features were derived from the union of the 3 semantic factor

locations from the autism group’s analysis with the 3 semantic factor locations

from the control group’s analysis. Thirty-six spherical volumes were created (from

2 groups, 3 factors, 6 spheres per factor; each sphere was defined by voxels with

the highest loadings for the factor). Each sphere was characterized by the

activation levels of its representative voxels across the 16 social interactions

derived from the participants’ responses. The 16 activation levels of the 5 most

stable voxels in a sphere were averaged and then converted to z-scores. (The

stability of a voxel was defined as the similarity (correlation) of its pattern of

activation responses to the set of 16 interactions across the 6 presentation blocks.)

The same procedure was applied to all participants, including the test participant,

resulting in a set of features consisting of 576 values (36 spheres x 16 stimulus

items) for each participant. Only 115 of these features were used, namely those

with the largest absolute value difference between the group means in the training

set (any number of features between 80 and 290 resulted in the same classification

accuracy of 0.97). The machine learning procedure trained the classifier on these

data from 33 of the participants (each labeled as autistic or control), and then it

attempted to classify the remaining participant. In each of these 34 iterations of

classification, the training and test data were kept completely separate, including

34 separate factor analyses.

2. Classification of individual social interactions

The second type of classification attempted to identify to which of the 16 social

interactions a given brain image corresponded. The latter classification was

performed both within participants (re-iteratively dividing the participant’s data

into training and test sets) and across participants in a group (training the
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classifier on data from 16 participants and identifying the social interactions in the

data of the 17th, left-out participant). (see File S1 for details).

Results

Overview of main findings

N The neural activation patterns associated with social interaction concepts

such as hug and adore in individuals with high-functioning autism lack a

subcomponent of neural activity in posterior cingulate/precuneus, which is

strongly evident in control participants. This finding emanated from a factor

analysis of the activation patterns of 135 automatically selected voxels

(volume elements, each 59 mm3) from each participant distributed

throughout their brain. For reasons discussed below, we interpret this

subcomponent of neural activity as associated with self-related cognition.

N The individuals in the autism and control groups can be identified as such

automatically with high specificity and sensitivity by a machine learning

classification of the neural activity associated with these social concepts. This

result was obtained when a machine-learning classifier based on the factor

analyses and trained on the data of all but one left-out participant was able to

correctly predict whether or not that participant had autism in 33 of 34

(97%) of the cases.

N An individual’s neural representation of a particular social interaction (out

of the 16) can be reliably identified at far above chance level by a machine

learning classifier that has been trained on the neural activity from the same

individual in an independent set of trials, indicating a systematic relation

between brain activity and the thought about a particular social interaction.

N An individual’s neural representation of a particular social interaction can

similarly be reliably identified at far above chance level by a machine learning

classifier that has been trained on the neural activity of other members of their

own group, indicating a commonality of neural representations across

individuals. This outcome attests to the similarity of the alteration across

people with autism.

N The degree of alteration of the neural representation of self in an individual

with autism is correlated with the quality of the brain connective anatomy

(cingulum bundle) joining regions associated with the representation of self

(frontal and posterior midline brain areas). The degree of alteration is also

correlated with behavior (face processing ability as measured with the

Benton Facial Recognition Test [30] and other tests), thus providing a multi-

tiered account linking the neural activity, brain anatomy, and behavior

associated with an individual autistic participant’s thoughts about a

particular social interaction.

This summary of results provides an overview but the details follow below.
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Factor analysis results

The main group difference was the presence of a factor in the control group’s

activation with strong representation in the posterior cingulate/precuneus area, a

factor that was absent in the participants with autism. We interpret this factor in

the control group as being involved in self-related cognition, for two reasons.

First, one of the main brain locations associated with this factor, the superior

midline areas of posterior cingulate and precuneus, has been activated in many

previous fMRI studies when a thinking task involved consideration of the self, and

furthermore, several studies have reported that in autism this component of

neural activation is disrupted [13, 34]. (The voxel locations most associated with

the factor in this area are shown in Figure 2A. The complete set of 6 cortical

locations for this factor and the other factors are shown in Table S1 in File S1.).

The second facet of the results that is consistent with the interpretation of the

self-related factor is the ordering of the 16 social interactions by their factor scores

for this factor, particularly the items at the two extremes of the 16-item ordered

list. The two items with the highest factor scores were hate in the agent role and

humiliate in the recipient role (followed by hate/recipient and insult in both roles).

The two lowest-ranking interactions were kick in the recipient role and kick in the

agent role. By contrast, the autism group had no factor that ordered the

interactions similarly nor which had a substantial posterior cingulate factor

location, indicating a diminished degree of representation of the self in autism in

the context of these social interactions.

Figure 2B shows the difference between the two groups for the verb hug in the

agent role, indicating the relative absence of activation in posterior cingulate/

precuneus in autism compared to the control group. Although it was previously

known that there is sometimes abnormally low activation in autism in the

posterior midline areas, the new results here indicate much more precisely how

this region’s role is modulated by the degree of self-involvement in the control

group, and hence what is altered in the autism group.

Regardless of this factor’s precise interpretation, the coding of the social

interactions by this factor and the others makes it possible to identify whether an

individual participant belongs to the autism or control group, and furthermore to

identify which social interaction he or she is thinking about at a given time, as

described below.

In the autism group’s activation, the comparably ranked factor appears to

instead encode how physical the actions were. We base this interpretation on the

main brain regions associated with the factor, particularly L precentral (a motor-

related area) and L postcentral (a somatosensory area). The four interactions with

the highest scores from this factor are kick in both roles, hug in recipient role, and

encourage in the agent role, all of which entail a physical action). The four lowest-

ranked interactions were hate and insult in both roles.

The remaining three factors were similar between the two groups. We interpret

these three factors as coding for the positive or negative valence of the social
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interaction, the accessibility/familiarity of the interaction, and the length of the

verb name, factors which we describe in turn.

The social valence factor assigned high factor scores to socially positive

interactions (e.g. adore, compliment) and low scores for negative interactions (e.g.

humiliate, hate). The valence factors of the two groups were very similar, assigning

highly correlated (r5.96) factor scores to the 16 interactions. The brain locations

for this factor included caudate and putamen for both groups.

The factor interpreted as accessibility or familiarity produced factor scores for

the 16 interactions that were highly correlated (r5.89) between the two groups.

Furthermore, the brain locations associated with this factor, very similar for the

two groups, included regions that are part of the default mode network,

particularly middle cingulate, R angular gyrus, and R superior medial frontal. Our

interpretation of this factor is based in part on the assumption that the more

accessible the social interaction was, the more resources were left over to activate

the default network. According to this interpretation, activation of the default

mode network here is not an indication that these regions are semantically

encoding familiarity, but that their pattern of activation is a byproduct of the ease

or difficulty of semantic access. For example, for the control group, interactions

Figure 2. Posterior midline self factor location. A. Location of the voxels (circled) derived from the factor
analysis of the Control Group that defined the posterior cingulate/precuneus sphere of this group’s self factor.
Voxels in this cluster (with MNI x-coordinates extending from 0 to 29) are shown projected on the mid-sagittal
plane. (The coordinates and radii of all 6 spheres associated with this factor are shown in Table S1 in File S1).
B. Mean activation in midline brain structures for the verb hug (averaged over agent and recipient roles) for the
two groups, differing in posterior cingulate/precuneus. The verb hug was chosen for illustration here because
of the salience of hugging as a social interaction in autism, where enveloping pressure is sometimes desired
but without physical contact between oneself with another person, as in Temple Grandin’s squeeze machine
[40]. The depiction of the activation in this slice for all of the other verbs was very similar to hug, for both
groups.

doi:10.1371/journal.pone.0113879.g002
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with the highest accessibility/familiarity scores were compliment and hug whereas

insult and adore had the lowest scores.

The word length factor was extremely similar for the two groups both in terms

of the brain locations (strongly associated with L and R Occipital pole for both

groups) and factor scores for the 16 interactions (their correlation was r5.99)

which were also highly correlated with the number of letters in the verb name

(r5.98 for both groups), with compliment and hug anchoring the factor for both

groups. The 4 factors together accounted for 41.8% of the variation for the autism

group and 43.0% for the control group, with most of the factors accounting for

similar amounts (9.3–10.6%), except for the word length factor which accounted

for slightly more (13.3% for autism; 13.2% for controls).

In summary, the factor analyses indicate a major group difference, namely that

the autism group lacked a self factor and instead had a factor corresponding to the

verbs’ impersonal semantic (abstract-physical) properties.

Classification of participants as autistic or control

A machine learning classifier (GNB) that was based on the union of the two

groups’ factor analyses (minus the participant being classified) was able to identify

each participant as autistic or control with very high accuracy (33 of 34 or 97% of

participants correctly classified), misclassifying one participant with autism as a

control. The features of this classifier were derived from 3 factors from the autism

group’s factor analysis (physical-abstract, social valence, and accessibility) and 3

factors from the control group (self, social valence, and accessibility), excluding the

word length factor, which was very similar for the two groups. The pattern of

brain activation levels for the 16 interactions in the set of 36 locations associated

with the factors reliably distinguished the two groups. This outcome confirms the

postulated differential neurocognitive representations of social interactions for the

two groups, and indicates the substantial diagnostic potential of this approach.

In summary, the differences in the ways that people with autism in this sample

neurally represent interpersonal interactions can be used by a classifier to identify

a person as having autism or not, with high accuracy.

Classification of social interactions

It was possible to identify which of the 16 social interaction items a participant

was thinking about, based on the neural representation of the 4 factors that

emerged from each group’s factor analysis. A GNB classifier was trained on an

independent subset (4 of the 6 presentation blocks) of each participant’s own data

and then tested on their remaining subset (the mean of the other 2 presentations

blocks). Each of the 16 items was characterized by its activation level in 24 spheres

(6 spheres for each of the 4 factors) for that participant group. The resulting mean

rank accuracies (hereafter, accuracies) for classifying the 16 items were reliably

(p,.001) above chance level (0.56) for all participants (with mean accuracies of

0.71 for the autism group and 0.68 for the control group). The successful
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classification of individual social interactions indicates that the factor analysis

captured important components of their neurosemantic representation.

Another striking finding was the ability to identify which of the 16 social

interactions a participant with autism was thinking about by training the classifier

exclusively on the factor analysis-guided activation data of the other autistic

participants (again using the same 4 factors from the autism group). This

classification produced a mean rank accuracy of 0.82 in the autism group, with all

17 autism participants’ social interaction classification accuracies falling reliably

(p,.001) above chance level (0.72). (The higher mean classification accuracies

across participants than within participants may be due to the larger amount of

training data in the former case). That the representation of a social interaction in

a participant with autism could be decoded by training a classifier solely on data

from other people with autism indicates substantial commonality of the

neurosemantic alterations across people with autism. Despite the well-known

heterogeneity of autism, the alteration of the neural representation of these social

concepts is apparently similar across the autism participants.

Similarly, there was commonality across the control participants, where the

corresponding classification produced a mean accuracy of 0.77, with 16 of 17

control participants’ classification accuracies falling reliably (p,.001) above

chance level.

Relation to anatomical connectivity and behavioral measures of

social processing

Diffusion imaging was used to determine whether the altered representation of self

in autism is related to the quality of the cingulum bundle, the anatomical tract

that connects the frontal and posterior regions involved in the representation of

self. The measure of each autism participant’s cingulum tract quality was the mean

density across all voxels in the tract (computed from MNI-space density maps

representing the number of fibers passing through each voxel in the tract [35].

The measure of an autism participant’s rudimentary degree of representation of

the self was the mean stability of their 3 most stable voxels in the main location

(posterior cingulate/precuneus) of the control group’s self factor. The L cingulum

tract density measure (corrected for participants’ age) was positively correlated

(r5.50, p,0.05) with the rudimentary degree of representation of self. (The

correlation for the R cingulum tract was lower and not reliable, but in the same

direction, r5.17). This result indicates that better anatomical connectivity in a

participant with autism between posterior and anterior midline areas (both of

which have been involved in self-related activity in previous studies) was

associated with stronger rudiments of a self factor.

The strength of these self rudiments (corrected for participants’ age and full

scale IQ) was also positively correlated with each of the behavioral measures of

social processing: the Benton Facial Recognition Test score (r50.72, p,.05) [30],

as shown in Figure 3; WMS III Faces II (r5.69, p,.05); and Reading the Mind in

the Eyes (r5.78, p,.005). In addition, the correlation of the self rudiments with
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the ADOS social total was -.21 n.s. (the negative correlation is in the expected

direction). The indicated p-values are Bonferroni-corrected for the 4 compar-

isons.

Conventional general linear model (GLM) analyses

GLM contrasts revealed none of the main findings of the multivariate approach. A

between-group SPM contrast (Autism-Control) (all social interactions – fixation),

explored with an uncorrected threshold of p50.001 and extent threshold of 5

voxels showed essentially no group differences (the autism group’s activation was

higher in two small clusters (6 and 7 voxels) located in right superior and middle

frontal gyri). The within-group contrasts (all social interactions-fixation) showed

activation in similar areas for the two groups, including left inferior frontal gyrus,

left superior temporal gyrus, superior frontal, left middle frontal and middle

temporal, left inferior parietal areas, and bilateral occipital pole, as shown in

Figure 4. The group with autism additionally activated right inferior frontal gyrus,

middle frontal and middle temporal areas.

Discussion

The main finding provides a plausible biological basis for the psychological

phenomenon of altered conceptions of social interaction in autism. The factor

analyses indicate the autism group lacked a self factor and instead had a factor

corresponding to the verbs’ impersonal semantic (abstract-physical) properties.

The participants with autism may have viewed the social interactions referred to

by the verbs as though they themselves were a spectator (like an ‘‘anthropologist

on Mars,’’ as described by Temple Grandin, referring to how a person with autism

might view complex social interactions without self-involvement [36]). This new

approach to characterizing the nature of thought alterations provides a new

meaning to the concept of biomarker, which is usually thought of as a biological

marker of a biological state. Here we see a set of brain activation patterns

constituting a biological marker of a set of altered cognitive states corresponding to

conceptions of social interactions. The biological alteration in the brain activity

corresponding to the alteration of the thought pattern can be considered a

neurocognitive marker of autism. This overview provides a guide to the discussion

section but the detail and substantiation follow below.

The neurosemantic group difference is much weaker in non-social semantic

domains. A small pilot study of 6 adults with autism and 6 controls examined

whether the two groups differed to a similar extent in their neurosemantic

representations of 10 tools and 10 dwellings [37], two semantic domains that

might be expected to be represented rather similarly in autism and in controls.

Approximately similar machine learning methods produced substantially less

accurate group membership classification, identifying group membership

correctly for no more than 7 of the 12 participants (chance level accuracy would
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be 6 of 12), failing to find a statistically reliable group difference in the neural

representation of concrete objects.

Although the current findings with only 34 participants must be treated with

caution, they help close the loop relating brain activation patterns and brain

anatomy in autism to thought and behavior, suggesting a causal path. The evidence

we have reported above shows that (a) the group differences in activation patterns

in response to social interactions are sufficient for automated identification of

autism; (b) the main distinction of the autism activation pattern was the near

absence of systematic activation in a midline posterior cingulate/precuneus region

associated with the representation of self, indicating a lack of psychological self-

involvement in these social representation; (c) furthermore, in individuals with

autism, the residual strength (stability) of the self-related activation rudiments in

this brain area was correlated with the density of fibers connecting that area to a

frontal region, which is also involved in self-related cognition; and the residual

strength of the self-related activation rudiments was also correlated with

behavioral measures of the autism participants’ social processing ability. The

correlation with anatomy may be of particular interest because recent genomic

research has uncovered several genetic alterations (copy number variants and

single nucleotide variants) sometimes found in autism that are capable of altering

axonal development and maintenance during early neurodevelopment, potentially

leading to altered connectivity in the affected axonal tracts [24, 38, 39]. Thus,

alterations in frontal-posterior brain connectivity may underlie the altered social

behavior and brain activation observed in autism.

Figure 3. Degree of alteration of self-related activation in autism (estimated by its stability in posterior
cingulate/precuneus) and its relation to social processing ability measured by the Benton Facial
Recognition Test [30]. Both measures were adjusted for participants’ age and full scale IQ. One participant
with autism did not have a Benton Test score.

doi:10.1371/journal.pone.0113879.g003
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One extension of this approach may be to the study of alterations in autism of

thoughts of emotions. A recent brain-reading study has applied this method to

identifying which of 18 emotions a neurotypical participant was experiencing,

finding (a) high identifiability of emotions; (b) high commonality across

participants; and (c) a set of 3 neural factors underlying the emotions (valence,

intensity, sociality) [3]. These findings suggest that it should be possible to assess

alterations in emotion representations in autism and other disorders using the

current approach.

Study limitations

Despite the very high sensitivity and specificity of the approach (33/34 or 97% of

participants classified correctly), the study has clear limitations. First, the current

paradigm, requiring significant cooperation during thoughts about social

interactions, would be difficult to apply to participants with lower-functioning

autism. Second, it is not yet known whether this type of classification can

differentiate autism from other special populations, such as those with other

developmental and neurological disorders. Furthermore, it would be desirable to

develop a neurosemantic screening battery that contains a variety of items capable

of evoking altered representations in a number of psychiatric disorders, along with

a classifier that accurately identifies the disorder of individual participants. Each

disorder could then be identified or diagnosed on the basis of its own

characteristic alterations of thought. Because of the many co-morbidities among

psychiatric disorders, one might expect classification of some individuals into

Figure 4. Social Interactions-Fixation contrasts for the two groups. The uncorrected p-threshold is 0.001
and the extent threshold is 5 voxels for both groups.

doi:10.1371/journal.pone.0113879.g004
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more than one category. Fortunately, these limitations have the potential of being

overcome through further research efforts.

Factor analysis implications

There are several implications of the various factor analyses, most generally

indicating that it is feasible to determine the underlying dimensions of neural

representation of social concepts. Despite the fact that a concept evokes activation

in many different locations, it is possible to apply dimension reduction techniques

like factor analysis or principal components analysis to converge on a small set of

factors or dimensions that can account for much of the systematicity of the

activation. In the case of the 16 social interactions examined in the current study,

the three dominant dimensions were the self-related factor for the control group

or the physicality factor for the autism group, as well as the positive/negative

valence of the interaction and the accessibility/familiarity of the interaction. These

are proposed to be the underlying dimensions of the neural representations of

social interactions. The names we have given each of the factors reflect our

interpretations of them, which in turn are based on the each factor’s associated

brain locations and its ordering of the 16 interactions. Because social interactions

seem such an intrinsic concern of the human mind, it seems plausible that there

exist a core set of dimensions for thinking about them.

Regardless of the interpretability of the recovered underlying dimensions in a

neural representation space, the mere presence of such factors, common over

participants, suggests the possibility of there being a small number (say 50–200) of

fundamental neural dimensions of representation that underlie all concepts. In

effect, these dimensions would constitute a basis set, from which the

representation of any concept could be constructed. It would remain to be seen

whether any such basis set would be exclusively biologically given or whether there

could also be experience-based dimensions that are part of the basis set. The idea

of a basis set of this type is highly speculative, but as brain imaging research

progresses it will become increasingly possible to assess.

One of the assumptions of this study was that the thought alterations in autism

are underpinned by a perturbation of some fundamental dimension of neural

representation, which the results suggest may be the self-related dimension. More

generally, it is possible that other psychiatric disorders may be characterized by a

perturbation of a particular neural dimension of representation. For example, it is

possible that paranoia may be characterized by a perturbation (overactivity) of a

threat-detection dimension of representation. Perhaps psychiatric disorders that

are currently characterized by verbal descriptions of altered behavior and thoughts

may someday be characterized by altered neural dimensions of representation that

can be localized to particular sets of brain regions that represent a particular

property.

The finding of a commonality of representation among the participants with

autism reveals a facet of autism that stands in contrast to the well-known

heterogeneity of the disorder. Although people with autism surely differ
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enormously among themselves, they must nevertheless have something in

common. Almost everyone with autism has some alteration in social processing,

but the form of the altered behavior can differ among people, for a variety of

reasons, from people developing idiosyncratic coping strategies to people having

different mixtures of gene alterations. But there has to be something at the core of

the disorder that may be a defining characteristic. Many studies have characterized

the behavior or the brain activation in autism as being altered, but often without

specifying the nature of the alteration in terms that speak to its commonality

across people with autism. The current results provide a possible core property,

the neural representation of social interactions, that is altered similarly across

participants with autism, namely in that the representation of self is largely absent.

This finding supports theories of autism that postulated altered representation

of self in autism [10, 12]. The correlation between the alteration of self-

representation and the density of the cingulum bundle (which anatomically

connects frontal and posterior regions involved in the representation of self is also

consistent with the theory of frontal-posterior underconnectivity in autism [23].

The contribution of the machine learning is its demonstration that the factors

and their locations are capable of accurately discriminating between participants

with and without autism. The outcome of the factor analysis itself indicates that

the dimensionality of the fMRI data can be reduced, but it does not provide

evidence that the resulting dimensions are meaningful or useful. The machine

learning provides this demonstration, showing that one of the emerging

dimensions, namely self-representation, characterizes autism sufficiently well to

enable accurate classification. Not for the first time, the multivariate machine

learning analysis showed greater sensitivity to systematic activation differences

than did univariate GLM contrasts.

One potential application of the current approach is to provide a biological

measure of altered social processing in autism that can augment conventional

structured-interview measures, as well as neuroanatomical and brain activity

biomarkers of autism. A second potential application is to provide a precise

enough characterization of altered social representations in autism to allow the

design of targeted therapies and neuropsychiatric diagnostic procedures.

Furthermore, both applications of this approach may be feasible with other

psychiatric disorders which entail a systematic alteration of particular concepts,

such as delusions. But the most far-reaching scientific significance is that

psychiatric alterations of thought can begin to be biologically understood in light

of their direct psychological consequences using brain imaging techniques in

combination with machine learning analyses.
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fMRI data preprocessing 

The fMRI data were preprocessed with SPM2. The data were corrected for slice timing, 
motion, linear trend, high-pass filtered using a 190s cutoff, and transformed to MNI space 
(without re-sizing voxels or spatial smoothing). The percent signal change (PSC) relative to the 
fixation condition was computed at each voxel for each item presentation. Following 
procedures in a similar study [1], the mean PSC of the four images acquired within a 4s 
window that started 4s after stimulus onset (to account for the delay in hemodynamic 
response) provided the main input measure for the analyses. The PSC data for each item 
were further normalized to have a mean of zero and variance one. An intersection of spatially 
normalized images from all participants was used as a common mask for analysis, i.e. the 
analysis was restricted to voxels (about 16,000) that were present in the images of all 
participants. 
 
Task inattention assessment based on visual activation  

We have previously found that participant reports of inattention during the processing 
of particular items is correlated with an aberrant time course of activation in primary visual 
areas, and that the data from participants whose inattention occurs on a large percentage of 
the items produces poor classification. Consequently, the time course of the activation in 
occipital pole ROIs (spheres with MNI centers (-18 -98 -6) and (18 -98 -6) and 6 mm radii) was 
assessed for each item for each participant by comparing it to a linearly detrended template 
time course. The template was derived from the mean activation of 5 occipital pole voxels 
averaged over all items of the participant with the most accurately classified individual items 
(social interactions). 

The detrended time course for each item for each participant was computed using the 
mean of the 5 voxels per ROI with the highest overall correlation with the template time 
course (computed over all items). An item was considered unattended if its time course 
correlation with the template was less than 0.5 (based on pilot studies). A participant’s entire 
dataset was excluded if the percentage of unattended items was above 70% or 75%, 
depending on whether their in-plane (xy) head motion range was less than 1.5 mm. 

 
Factor analyses methods. 
1. Initial selection of 135 stable voxels per participant. Each voxel was first assigned a 

stability score using the data from the 6 presentations of each of the 16 stimuli, assessing 
how similarly (stably) the voxel responded across the set of 16 items in each of the 
presentations. Each voxel was first assigned a 6 x 16 matrix, where the entry at row i, column 
j, is the fMRI activation level (percent signal change from rest) of this voxel during the ith 
presentation of the jth stimulus. The stability score for this voxel was then computed as the 
average pairwise correlation over all pairs of rows in this matrix. This measure assigns higher 
scores to voxels that exhibit consistent (across different presentations) variation in activity 
across the 16 stimuli. For each participant, 135 voxels were then selected to include major 
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regions as follows: the 30 most stable voxels from each of the frontal lobe plus anterior 
cingulate cortex, the temporal lobe, the parietal lobe plus posterior cingulate cortex, and the 
occipital lobe, as well as 15 voxels from subcortical areas (excluding cerebellum). These 
regions were defined by the Automated Anatomical Labeling (AAL) atlas [2].  

2. Factor analysis algorithm. A Matlab implementation of a principal factor analysis 
algorithm (equivalent to the SAS v. 9.2 (http://www.sas.com) factor analysis procedure) 
including varimax rotation was used. The factor scores f for individual stimulus items were 
obtained by solving the equation below.  In this equation, let yvi

(p)
 be the observed fMRI 

activity for participant p responding to stimulus i at voxel v. The first level factor analysis 
provides a set of N (=7) factors, each characterized by their factor scores fni

(p)
 for participant 

p, and their factor loadings lvn
(p)

, such that: 
                                      N 

                                                    yvi
(p) 

 = ∑ lvn
(p) 

 fni
(p) 

                             
n = 1

 
A second level of factor analysis, based on the output of the first-level analyses, was 

performed separately for each group to obtain 4 group-level factors underlying the 
interpersonal verb representations. Just as the first level analysis expresses the yvi

(p)
 values in 

terms of factors f and their loadings l, the second level analysis expresses the first level factor 
scores fni

(p)
 in terms of participant-independent factor scores and loadings that relate them to 

the first level factor scores. Thus, given a set of second level factor scores and loadings, and 
the first level factor scores and loadings, we can reconstruct the observed yvi

(p)
. Importantly, 

the group-level factor scores and loadings taken together with the corresponding brain 
locations (see below) provide the basis for comparing the representations for the two groups 
of participants. 

In addition to the two-level factor analyses, single-level FAs (one per group) which 
expressed the activation levels of voxels from all group participants directly in terms of group 
factors, were also performed and they produced factor structures that were somewhat 
similar to the two-level analyses but the factors were less interpretable.  

3. Identifying cluster-based spheres. Each factor from the second level factor analysis 
was then associated with the set of six spherical brain regions in which the factor’s fMRI 
activity was most strongly expressed. This association was based on the loadings from both 
levels of the FA. In the first (participant) level FA, we observed that the majority of the 135 
voxels had high loadings (positive or negative) on just one of the 7 first-level factors. 
Consequently, those of each participant’s 135 voxels that had some loading of at least .4 
were mapped to the factor for which it had the highest loading. 

At the second (group) level, those of the 119 first-level factors (17 participants x 7 
factors) that had some loading of at least .4 (absolute value) on one of the group factors were 
mapped to the factor for which it had the highest loading. This procedure resulted in each 
group factor being mapped to a set of the voxels (contained in the union of the initially 
selected 135 voxels per participant).  For each factor, its associated voxels were then used to 
derive 6 spherical regions defined by spatial clusters of these voxels. To specify the clusters 
for each factor, the factor’s voxels were plotted in MNI space and the spatial clusters of these 
voxels were identified. For the 6 clusters with the greatest number of voxels, corresponding 
spheres were defined. Supporting Table S1 presents the center of mass and the radius 
(defined as mean distance of all cluster voxels from the center; if this distance was less than 
6mm, the cluster radius was set to 6mm) of each of the resulting clusters and spheres, for 
each of the 4 second level factors. 

The factors of each group, serving as a basis of the representation of social interactions, 
were then interpreted in terms of the factor locations (spheres) and the ordering of the 16 
social interactions by their factor scores, and compared for the two groups. 

4. Using factors to specify features for machine learning. The factor scores and spheres 
served as the basis (features) for the identification of group membership and identification of 
social interactions using machine learning algorithms. In the machine learning applications, 
group-level FAs were performed on the data from only 16 of the 17 participants in the group, 

http://www.sas.com/
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excluding the participant whose data is about to be classified. Factor scores and locations 
were identified for each analysis. The factors in each 16-participant FA were mapped to the 
corresponding full-group factors (by means of the highest correlation), identifying the subset 
of factors to be used in the machine learning classification, as described below. In all of the 
machine learning analyses, not only were the training data set and test data set kept 
completely separate, but also the factors were never derived from the data of the participant 
that was being classified. 

 
Machine learning computations 

Classifiers were trained to identify mental states associated with thinking about the 
social interactions, using the evoked patterns of functional activity (mean PSC). Classifiers 
were functions f of the form: f: mean_PSC → Yj, j={1, …,m}, where Yj were one of the binary 
categories (group membership) or the 16 social interactions, and where mean_PSC was a 
vector of mean PSC voxel activations associated with a set of factor-determined spherical 
volumes, as described below. To evaluate classification performance, data were divided into 
training and test sets. A classifier was built from the training set, and classification 
performance was evaluated on the left-out test set, to ensure unbiased estimation of the 
classification error. Our previous exploration indicated that several classifiers produced 
comparable results. In the interest of simplicity, we report results from one feature selection 
method and one classifier.  

1. Classification. We used the Gaussian Naïve Bayes (GNB) pooled variance classifier [3]. 
It is a generative classifier that models the joint distribution of a class Y (e.g. autism and 
control) and attributes (spheres), and assumes the attributes X1,…,Xn are conditionally 
independent given Y. The classification rule is: 
                                               n 

        Y ← arg max P(Y = yj) ∏ P(X i | Y = y j), j = 1,2,…,m, 
              yj                                  i

 

where m is the number of classes (either 2 or 16) and n is the number of spheres.  
The classes were approximately equally frequent. Classification results were evaluated 

using k-fold cross-validation, where one example per class was left out for each fold. In a two- 
and 16-class classification problem, chance level is 0.5. Rank accuracy was used to evaluate 
16-class classification.  

2. Preliminary feature selection for classification. The features used for classification 
were the activation levels within a set of spheres (volumes) associated with the factors, 6 
spheres per factor. Each sphere was characterized by the properties of the activation profile 
of 5 of its contained voxels, selected as described below. Using the factor spheres as features 
(as opposed to using voxels) served two purposes: first, it provided a way to map from the 
factor analysis results to the machine learning feature selection procedures; second, it 
allowed for a small amount of individual differences in the precise location of voxels 
associated with a given factor. The feature selection and cross-validation procedure for the 
group membership classification is described in detail in the main paper. 

3. Classification of individual social interactions. To identify which of the 16 social 
interactions a participant was thinking about, all group factors (4 factors per group) were 
used.  

Within participant classification. For cross-validation over the 6 presentations, the data 
were iteratively partitioned into all 15 possible subsets of 4 presentations used for training 
and the mean of the remaining two presentations used for testing. (This protocol of averaging 
over two presentations for testing purposes was used because the data from a single 
presentation was found to be too noisy to allow accurate neurosemantic classification in 
several previous studies).  

The factors obtained from the 16-participant FA (excluding the participant being 
classified) were used to specify 6 spheres per factor (similarly to the group membership 
classification). A maximum of 5 voxels with the highest cross-presentation stability scores 
were selected from each sphere (to characterize the sphere), based on the voxel stability 
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computed over the 4 training presentations. The same voxels were selected to represent the 
sphere in the training and test presentations. The activation levels of the selected voxels were 
averaged to obtain the 16 activation levels for each sphere.  

Classification across participants within a group. For the analysis across participants 
within each group, one test participant at a time was excluded from the training set, and a 
16-participant FA was used to specify 6 spheres per factor. A maximum of 5 voxels were 
selected from each sphere; for both the training and test participants, these were the voxels 
with the highest cross-presentation stability scores. The 16-item activation levels of selected 
voxels were averaged across the 6 presentations and the selected voxels within a sphere.  
There were 16 such sets of data used for training the classifier (from 16 participants) and a 
set of data from the test participant. 

 
High angular resolution diffusion-weighted imaging (HARDI) 

Diffusion data were collected using a diffusion-weighted, single-shot, spin-echo, echo-
planar imaging (EPI) sequence with TR = 5300 ms, TE = 95 ms, bandwidth = 1860 Hz/Voxel, 
FOV = 200 mm, and matrix size = 128 x 128. Thirty-six 3-mm thick slices were imaged (no slice 
gap) with no diffusion-weighting (b = 0 s/mm

2
, 8 repetitions equally spaced throughout the 

acquisition), and with diffusion-weighting gradients applied in 61 orthogonal directions (b = 
1000 s/mm

2
). The diffusion data were preprocessed (corrected for motion and eddy currents) 

using FSL tools (http://www.fmrib.ox.ac.uk/fsl/fdt/index.html). The acquired gradient vector 
tables were rotated to match the motion-corrected volumes, and orientation density 
functions were reconstructed with Diffusion Toolkit (DTK) software [4] 
(http://www.trackvis.org/dtk), using the spherical harmonic version of the Q-ball method [5]. 
Whole-brain deterministic tractography was performed with DTK software using default 
parameters. Segmentation of the left and right cingulum bundle from each participant’s 
whole-brain tractography followed previously described protocols [6] and using TrackVis 
software [4]. The mean density of the fibers (adjusted for brain size via transformation to 
MNI space) was then calculated for each participant’s left cingulum bundle. 
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Supporting Table S1: Locations and radii of factor spheres for the autism and control 
groups. Anatomical labels, taken from the AAL atlas, describe the location of the 
main coverage of the sphere. The variation accounted for by autism group factors 
was: Physical-Abstract: 9.5%; Social valence: 9.7%; Accessibility: 9.3%; Word length: 
13.3%, and by the control group factors, Self: 10.6%; Social valence: 9.3%; 
Accessibility: 9.9%; Word length: 13.2%. 
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Supporting Table S2: Social interactions sorted by their factor scores for the 
autism and control groups. The interactions shown in bold represent the agent 
role. Only the 3 interactions at each of the two extremes of each factor are shown; 
the factor scores for the intervening 10 interactions are similar to each other. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Autism 

 
Physical-
Abstract 

Social Valence Accessibility Word Length 

Highest 
scores 

kick adore encourage compliment 

encourage adore hug humiliate 

hug compliment hate encourage 
 … … … … 

Lowest 
scores 

hate kick kick hate 

insult humiliate kick hug 

insult hate insult hug 

     

 
Control 

 

Self Social Valence Accessibility Word Length 

Highest 
scores 

hate adore compliment compliment 

humiliate adore hug humiliate 

hate compliment humiliate encourage 

 … … … … 

Lowest 
scores 

encourage hug humiliate hate 

kick hate adore hug 

kick humiliate insult hug 
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