
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage

Neural representations of the concepts in simple sentences: Concept
activation prediction and context effects

Marcel Adam Just⁎,1, Jing Wang1, Vladimir L. Cherkassky

Center for Cognitive Brain Imaging, Psychology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA

A R T I C L E I N F O

Keywords:
Neural representations of concepts
Predictive modeling
Multi-concept sentences
FMRI
Sentence context effects

A B S T R A C T

Although it has been possible to identify individual concepts from a concept's brain activation pattern, there
have been significant obstacles to identifying a proposition from its fMRI signature. Here we demonstrate the
ability to decode individual prototype sentences from readers’ brain activation patterns, by using theory-driven
regions of interest and semantic properties. It is possible to predict the fMRI brain activation patterns evoked by
propositions and words which are entirely new to the model with reliably above-chance rank accuracy. The two
core components implemented in the model that reflect the theory were the choice of intermediate semantic
features and the brain regions associated with the neurosemantic dimensions. This approach also predicts the
neural representation of object nouns across participants, studies, and sentence contexts. Moreover, we find that
the neural representation of an agent-verb-object proto-sentence is more accurately characterized by the neural
signatures of its components as they occur in a similar context than by the neural signatures of these
components as they occur in isolation.

Introduction

Concepts may be the basic building blocks of thought, but the
minimally composed structure of human thought is a proposition
consisting of multiple concepts. We report here the capability of
predicting the brain activation patterns evoked by the reading of an
agent-verb-object proto-sentence. We develop a model that estimates
the activation pattern of component words from the mappings learned
in context-sensitive environments, and combines them to produce
predictions of the resulting activation.

The types of concepts that have previously been most amenable to a
mapping between a stimulus item and a brain activation pattern have
been concrete object concepts. This type of mapping was initially
demonstrated in studies in which the objects were presented visually or
were being recalled (Carlson et al., 2003; Connolly et al., 2012; Cox and
Savoy, 2003; Eger et al., 2008; Hanson et al., 2004; Haxby et al., 2001;
Ishai et al., 1999; Mitchell et al., 2004; O’Toole et al., 2005; Polyn et al.,
2005; Shinkareva et al., 2008), and subsequently in studies where the
concept was evoked by the word that named it (Just et al., 2010; Peelen
and Caramazza, 2012; Shinkareva et al., 2011). Predictive modeling of
brain activity associated with concepts was enabled by the postulation
of a mediating layer of perceptual and semantic features of the objects,
resulting in the decoding from their fMRI signature pictures or text

concerning objects (Anderson et al., 2015; Mitchell et al., 2008; Pereira
et al., 2011), natural images (Naselaris et al., 2009), faces (Cowen et al.,
2014), objects and actions in video clips (Huth et al., 2012; Nishimoto
et al., 2011) and in speech (Huth et al., 2016). Other studies have found
distinct activation patterns associated with the neural representations
of concepts of varying degrees of semantic abstractness (Anderson
et al., 2014; Ghio et al., 2016; Wang et al., 2013). A few studies have
further demonstrated the ability to associate brain activation patterns
with inter-concept relations in a proposition (Frankland and Greene,
2015; Wang et al., 2016). However, characterizing the neural repre-
sentations of sentences and the effect of contexts has remained a
considerable challenge.

The major advance attempted in the current study was to char-
acterize the neural representation of simplified prototype sentences
and the effect of context within a theory-driven computational frame-
work. The model was theory-driven, built on the previous knowledge of
the neural representations of objects in several ways. First, the stimulus
sentence prototypes (e.g., Plumber grabs pliers) described a scenario
associated with a general theme pertaining to one of three known
semantic dimensions of neural representation, namely shelter, manip-
ulation, or eating. Second, the meaning components of the stimulus
word-concepts were defined as the concepts’ relatedness to each of the
three dimensions. These three semantic properties were used to predict
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the neural representation of word concepts and the proto-sentences
that they composed. Third, the analysis of the activation patterns
focused on the a priori specified brain regions that were associated
with these three dimensions. The approach was computational in the
sense that it established the mapping between the concepts’ semantic
properties on the three dimensions and the voxel activation patterns
associated with reading the sentences. This mapping was sufficiently
detailed to characterize the behavior of individual voxels with respect
to the neurosemantic properties, and sufficiently robust to be general-
ized to predict the neural signatures of new sentences with similar
contexts but composed of new words.

A brief terminological and theoretical disclaimer is warranted about
our use of the word sentence in this article. The stimuli were proto-
sentences, in that they were lacking articles for the nouns: Hiker enters
house was presented instead of The hiker enters the house. The stimuli
would be more accurately referred to as proto-sentences, but for
brevity following this disclaimer we use the term sentences. The
theoretical disclaimer concerns the fact that our analysis and model
focuses on the neural representation of the three content words of each
sentence, and not their thematic or syntactic structure. In fact, all of the
stimuli were identical with respect to thematic and syntactic structure
(agent-verb-object), and our model does not characterize the repre-
sentation of these identical aspects of the sentences. Thus our reference
to the neural representation of the sentence stimuli refers to the neural
representation of the three content words, and not to thematic or
syntactic aspects of the representation.

We hypothesized that the neural activation pattern evoked by a
simple proto-sentence can be predicted by the semantic properties of
the sentence's component words. The theoretical background for
construing the neural representations of concrete objects is a neural/
semantic account of concrete object representation (Just et al., 2010;
Mitchell et al., 2008) that postulates that the neural signature of a
concept is composed of component activations in the various brain
subsystems that come into play during the consideration of, or
interaction with, the concept. These component activations are asso-
ciated with different dimensions of the meaning of the concept. For
example, thinking about a knife evokes motor and premotor areas,
which have been associated with action verb processing in previous
studies (Hauk et al., 2004; Pulvermüller et al., 2005). These regions are
found to respond to various manipulable objects such as hand tools,
and to not respond to non-manipulable objects, indicating their role in
representing the meaning dimension of manipulation or body-object
interaction. The three main neurosemantic dimensions underlying the
representation of 60 concrete nouns were shelter, manipulation, and
eating (Just et al., 2010). Such sets of dimensions and their corre-
sponding brain subsystems are proposed to constitute part of the basis
set for neurally representing concrete objects. Thus, the activation
pattern associated with a particular concrete concept should be
predictable, based on the concept's semantic properties that are
encoded by these brain subsystems.

Of course, a sentence context is very likely to modulate the neural
representation of its component concepts, but the neural modulatory

principles by which such context effects operate have not been
determined. We propose a hypothesis and a method to decode the
multiple concepts embedded in a sentence context from a particular
form of their fMRI activation signature. One key to the method is to
base the estimate of a concept's neural signature on its instantiation in
a set of roughly similar sentence contexts (excluding the sentence
whose activation is being predicted). This approach assumes that the
neural signature of a component concept in context is modulated by the
context, and thus differs systematically from the signature of the word
when it is processed in isolation, an assumption that we tested. The
estimate of the neural signature of a concept was obtained by averaging
the activation patterns of several different sentences containing the
concept, on the assumption that the neural signals contributed by the
other concepts in the sentences would be cancelled out by the
averaging. The implication underlying this method is that the neural
representation of a simple proto-sentence can be predicted by the sum
of the neural representations of its content word concepts, as estimated
from approximately similar contextual environments.

Materials and methods

Materials

Each of the 36 simplified three-word sentences (of the form Agent-
verb-object) described a scenario associated with a general theme
pertaining to one of three semantic factors shelter, manipulation, or
eating, previously shown to underlie the representations of concrete
nouns (Just et al., 2010). The objects were selected from among the 60
concrete objects whose associated activation patterns were factor
analyzed in a previous study (Just et al., 2010); the selected objects
were those with some of the highest factor scores for their dominant
semantic factor. The agents and verbs were chosen for consistency with
the theme or factor. There were 12 sentences per theme, for a total of
36 sentences, as shown in Table 1. The sentences were composed of
triplets of words from among 27 content words: 9 words of each word
class (agent, verb, and object). Within each class, 3 words were
associated with each neurosemantic factor. The 36 sentences were
assigned to four sets, so that each set contained nine sentences, three
per theme, and sentences in each set used all 27 words, each occurring
in one sentence. Each of the four blocks of trials presented the 36
sentences in a different order.

Participants

Ten healthy, right-handed, native speaking adults (7 females) from
the Carnegie Mellon community participated in the fMRI experiment.
All participants gave written informed consent approved by the
Carnegie Mellon Institutional Review Board. The data from all the
participants were included in the analyses below.

Table 1
Thirty-six stimulus sentences. Each set includes 9 sentences that are composed from 27 content words.

Set 1 Set 2 Set 3 Set 4

Shelter Explorer enters car Explorer repairs church Explorer exits house Tourist enters car
Hiker exits church Hiker enters house Hiker repairs car Explorer exits church
Tourist repairs house Tourist exits car Tourist enters church Hiker repairs house

Manipulation Plumber drops hammer Plumber lifts knife Plumber grabs pliers Mechanic drops hammer
Carpenter grabs knife Carpenter drops pliers Carpenter lifts hammer Plumber grabs knife
Mechanic lifts pliers Mechanic grabs hammer Mechanic drops knife Carpenter lifts pliers

Eating Diner bites carrot Diner tastes celery Diner chews tomato Picnicker bites carrot
Glutton chews celery Glutton bites tomato Glutton tastes carrot Diner chews celery
Picnicker tastes tomato Picnicker chews carrot Picnicker bites celery Glutton tastes tomato
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Procedure

Participants were asked to read a set of 36 sentences that was
presented 4 times. The three words of each sentence were presented
one at a time and they accumulated on the screen, with each additional
word appearing 500 ms after the onset of the preceding word. After all
the words had been displayed (1500 ms after sentence onset), the
screen was blanked for 3500 ms, followed by a 7000 ms presentation of
the letter “X” in the center of the screen. The total duration of a
sentence trial was thus 12 s.

As the participants read each word, they were to think of the
intrinsic properties of that concept, and integrate their representation
of the concept with the accumulating context of the sentence. After the
whole sentence had been presented, they were to finish their thought of
the sentence during the blank screen period. Participants were
instructed to relax and clear their mind during the fixation interval
(indicated by a central “X”) that followed the blank screen period. This
instruction was intended to evoke a rest state and allow the hemody-
namic response associated with the task to decrease toward baseline.
The participant was instructed to consistently think of the same
properties of a concept across the four presentations. This instruction
facilitated the identification of the voxels that had a stable set of
responses to the stimuli across multiple presentations. At the beginning
of each presentation block and after the last block, the fixation “X” was
presented for 17 s, to obtain baseline activation measures. These
instructions and general procedures have been used in several previous
fMRI studies of semantic decoding (Buchweitz et al., 2012; Damarla
and Just, 2013; Just et al., 2014, 2010; Mason and Just, 2016;
Shinkareva et al., 2011; Wang et al., 2013).

In the last scan session, participants were asked to read the 27
content words presented in isolation. Each word was presented for 3 s,
followed by a 7 s fixation. Participants were instructed to keep thinking
about the properties of the concept during the 3 s presentation, and
clear their mind when the fixation cross appeared. The 27 words were
presented 5 times in 5 blocks of presentations. At the beginning of each
presentation block and after the last block, the fixation cross was
presented for 17 s, to obtain baseline activation measures.

fMRI imaging protocol

Data were collected using a Siemens Verio 3 T at the Scientific
Imaging and Brain Research (SIBR) Center at Carnegie Mellon
University. Functional images were acquired using a gradient echo
EPI pulse sequence with TR = 1000 ms, TE = 25 ms and a 60° flip
angle. Twenty 5-mm thick, AC-PC aligned slices were imaged with a
gap of 1 mm between slices. The acquisition matrix was 64 × 64 with
3.125 × 3.125 × 5 mm3 voxels.

Behavioral ratings

To independently assess the strength of the relation of the 27
content words to each of the three neurosemantic factors, behavioral
ratings of the semantic relatedness (on a 1–7 scale) of each of the 27
stimulus words to each of the 3 semantic factors were obtained from 17
participants who did not participate in the fMRI studies. The mean
ratings across these participants were then used as the latent semantic
features in the modeling. The mean score of shelter-related words on
the 3 factors: shelter = 5.08 (SD = 0.83), manipulation = 3.57 (SD =
1.16), eating = 2.43 (SD = 0.88). For manipulation-related words, the
score of shelter = 2.40 (SD = 0.80), manipulation = 6.27 (SD = 0.59),
eating = 2.56 (SD = 0.84). For eating-related words, the score of
shelter = 1.52 (SD = 0.52), manipulation = 2.84 (SD = 0.69), eating =
6.83 (SD = 0.30). The behavioral ratings for all the content words are
shown in Table S1.

fMRI data preprocessing

The fMRI data were corrected for slice timing, head motion and
linear trend, and were normalized into MNI space with a voxel size of
3.125 × 3.125 × 6 mm3, using SPM2 (Wellcome Department of
Cognitive Neurology, London). The percent signal change (PSC) in
signal intensity during each presentation of a sentence was computed
at each voxel relative to a baseline activation level measured during
fixation intervals and averaged over sixteen such intervals, each one
17 s long (but excluding the first 4 s from the measurement to account
for the hemodynamic response delay). The fMRI data from the
sentence presentation that were used for analysis consisted of the
mean of 5 s of brain images (5 images with a TR of 1 s), the first
starting after 6 s from the sentence onset. This same window was
optimal for decoding the agent, verb, and object. (This temporal
window was determined in an independent pilot study, as described
in Supplementary Materials). The PSC of this mean image was then
normalized to a mean of 0 and variance of 1 across voxels for each
image, to equate the overall intensities of the mean PSC images.

Predicting neural signatures of sentences

The predictions of the neural activity associated with a sentence
within a participant were generated using the following steps, depicted
schematically in Fig. 1. The model first predicts the brain image for
each word (based on the mapping between the word's semantic
properties and the activation patterns evoked by those properties in
other words) and then combines these predicted images to produce
predicted images of a large number of sentences. The predicted
sentence images are compared to the observed image, and the model
accuracy (based on the ranked similarity between the predicted and
observed activation of a sentence) is computed.

The predictions used a cross-validation procedure that partitioned
the data into a training set and a test set during the prediction
generation and testing of each sentence. The brain images associated
with a given sentence, including all four sentence presentations, were
left out of the training set in each cross-validation fold. When each of
the word classes of agent, verb, or object was modeled, the sentences
that contained the word of that class in the test sentence were also
excluded from training. For example, when the sentence Explorer
enters car was tested, the model of agent was trained without using
data from sentences containing the word explorer, and the model of
verb was trained using sentences without enter, etc.

1. The 120 voxels distributed in the three semantic factors areas (12
spheres; Fig. 2 and Table S2) with the most stable profiles over
presentations for the words in the training set were selected as
neural features. A voxel's activation profile is its vector of
activation levels evoked by the set of stimulus items, in this case,
the images evoked by the set of sentences containing any of the 8
training words within a class. The stability of a voxel was
measured by the mean of the pairwise correlations between the
pairs of activation profiles across the 4 presentations. In each of
the 12 spheres, the 3 most stable voxels in that sphere (175.8 mm3

per sphere) were first selected. Then the next 84 most stable
voxels were selected regardless of which sphere they were in. Such
selection criteria obtain contributions from all a priori locations
and the contribution of voxels with highest overall stability.
Stability-based voxel selection is a common practice in fMRI
decoding studies (Pereira et al., 2009). The rationale for selecting
voxels within the a priori clusters, instead of using all the voxels
in these regions, was that these spherical clusters represent the
approximate locations of the neural substrates that contribute
most to the factors. Selecting particular voxels within the spheres
counteracts the spatial and coregistration variations across scans
and across individuals. The choice of the number of voxels to be
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selected (3 voxels per sphere, 120 voxels in total) was arbitrary.
Post hoc analysis showed that the decoding accuracy was robust to
the number of voxels being chosen (Table S3).

2. The relations between PSCs at each voxel and the latent semantic
features of the 8 training words were mapped using a linear multiple

regression model. The semantic properties of each content word on
the three dimensions of shelter, manipulation, and eating were
ratings from an independent group of 17 participants. The PSCs
associated with a word were estimated by the mean PSCs of training
sentences that contain the word. The assumption underlying this

Fig. 1. Block diagram of the processing pipeline for the main analysis.

Fig. 2. Twelve brain locations associated with representation of the three factors of shelter, manipulation and eating. Five of the spheres are postulated to code various aspects of the
shelter factor, four for the manipulation factor, and three for eating.
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procedure was that the neural representation of each sentence
contained a representation of its content words; averaging the
representation of a set of sentences all containing a given content
word would bring out the representation of that shared content word
while averaging out the representations of the other words. The
weight bvi that specifies the contribution of the i th semantic feature
to the activation level is learned by training the regression model and
then the predicted images for the three content words in a sentence
are combined

∑PSC b f=v
i

vi i
=1

3

where PSCv is the percent signal change in the representation of
sentence at voxel v, and fi is the ith feature. The trained model should
predict the neural signatures of all 9 words using the corresponding
semantic features (i.e., each separate model based on 8 words should
predict PSCv for the 9th, left-out word).

3. The predicted activation patterns for a given sentence were gener-
ated as follows. Predicted brain images of 351 sensible sentences
(out of 729 possible agent-verb-object combinations, excluding
nonsense sentences such as Carpenter chews car) consisting of
one of the 9 agents, one of the 9 verbs, and one of the 9 objects were
generated by averaging the predicted images of each of the combina-
tions of words that formed a meaningful sentence. The predicted
sentence image consisted of the union of the images of the selected
voxels in each word-class model.

4. The accuracy of the sentence prediction was assessed by comparing
each predicted image to the observed test sentence image using
cosine similarity. The measure of the prediction's accuracy was the
normalized rank of its similarity among the 351 (i.e., the normalized
rank of the correct label in the posterior-probability-ordered list).
The rank accuracy in Fig. 3 was averaged across all cross-validation
folds, in which each of the 36 sentences was tested.

5. The statistical significance of a model's accuracy was evaluated by
random permutation testing. The model's accuracy was compared
with the accuracy of a random classifier with the same design
parameters: the same number of classes, cross-validation folds, and
items with arbitrary labels. Given the distribution of accuracies of
such a random classifier in a large (100,000 or 10,000) number of

permutations, the critical levels of accuracy were computed for a
given probability level.

The effects of sentence context on the neural and semantic
representations of component concepts

PSCs evoked by the words presented in isolation were computed
using the same approach as sentence PSC, except that the images were
based on a 4 s window starting after 4 s from the word onset (Pereira
et al., 2009). The same approach as described above used these images
to predict the neural signature of a sentence, except that the training
data were the PSCs of words in isolation. The sentence predictions used
the same procedure as in the main analysis. In addition, a non-
predictive sentence classification task was performed without modeling
the association to the intermediate semantic features latent factors, by
directly averaging the word PSCs to estimate sentence activation.

The comparison of activation differences between words-in-context
and words-in-isolation was performed within the set of spheres
associated with each neurosemantic factor. The activation data of
words-in-context were the mean PSC across all the sentences contain-
ing the word. The activation levels of the voxels within the set of
spheres associated with each neurosemantic factor were averaged. No
additional image normalization (aside from setting each image to have
mean of 0 and variance of 1) was applied.

Predicting activation patterns of concrete nouns across studies and
across participants

In a previous study (Just et al., 2010), 11 participants were scanned
while being presented with 60 concrete nouns (in a paradigm similar to
the presentation of the words in isolation in the current study). Nine of
these nouns were the same as the 9 objects of the action in the current
study. Factor analysis of the data revealed the presence of three main
semantic factors underpinning the neural representation of nouns
naming physical objects, factors labeled as manipulation, shelter, and
eating. The interpretation of these factors was supported by the finding
that behavioral ratings of the salience of each of the three factors to
each of the nouns were highly correlated with the nouns’ fMRI-based
factor scores. These factors were represented in a total of 12 brain
locations. The goal of the analysis here was to predict activation
patterns across studies and across participants.

A Gaussian Naïve Bayes classifier was trained on the fMRI data of
the 11 participants in the previous study (Just et al., 2010) for the 9
nouns, denoting 9 objects, viewed in isolation. The classifier was then
tested on data acquired in the current experiment in which the same 9
nouns appeared in sentence contexts, and the classifier attempted to
identify these 9 nouns. In this cross-study classification, using the exact
same voxels across participants as features is not a viable approach.
Instead, the locations of the features were specified in terms of the 12
factor-related-spheres (where each sphere was characterized by the
mean activation of its representative voxels). In the training set data,
the most representative voxels were the 10 voxels per sphere with the
highest product of their stability scores times the correlation between
the voxel's set of mean activation levels for the 9 nouns and the
independent ratings of these nouns with respect to the factor associated
with the sphere. This definition of representativeness was chosen a
priori, based on the analyses reported in the previous study (Just et al.,
2010). For example, a representative voxel in the premotor sphere
would have a stable profile across presentations and would have higher
activation levels for the more manipulation-salient (defined by the
independent ratings) objects like pliers and hammer. The 12 features
for the model's training set were thus the means of the activation levels
of the 10 most representative voxels in each sphere for each of 54
observations (9 nouns presented 6 times each) for each of the 11
participants in the previous study, as well as the 9 labels of the
concepts.

Fig. 3. Mean rank accuracies of sentence prediction at the group level and individual
level. The Group-level indicates the model accuracy on fMRI images aggregated across
participants. The Mean over participants indicates the mean model accuracy within
individual subjects, i.e., the mean of the next 10 bars. The dashed and dotted lines
indicate the critical values of accuracy being significantly different from chance (dashed:
p < 0.01; dotted: p < 0.0001). The critical values of accuracy were determined by
100,000-iteration random permutation tests of the corresponding classification para-
digms, taking into account the number of cross-validation folds, number of test items per
fold, and number of classes. All the other analyses were performed at the individual
participant level unless otherwise specified.
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The model was then tested on the corresponding test data from
each participant in the current study, averaging over the 4 presenta-
tions of the nouns. The test brain images from the current study for the
nine nouns were obtained by averaging the fMRI images of all of the
sentences in the current study that included that noun. The 12 features
of the test set were the mean activation levels of the 10 voxels in each
sphere that were most stable across 4 presentation blocks. As men-
tioned above, this approach allowed for cross-scan and cross-individual
variation. Note that the stability was measured by using only the
nominal labels of the test data without knowing which label was which.
No information from outside of the test set entered into the processing
of the test set.

The choice of specific parameters (total number of voxels, minimum
number of voxels per sphere) did not substantially affect the accuracy
of within-participant sentence classification (as shown in Table S3).
The specific number (10) of representative voxels per sphere for cross-
participant analysis was chosen to equate the total number of voxels in
the two main analyses. The statistical significance of model accuracy
was evaluated by random permutation testing.

The following is a summary of the main analyses that were
performed, which assess the accuracy of the machine learning predic-
tions of sentence activation, and which compare accuracies across
different models, including random models.

• The main sentence activation model was applied 1. to group-level
data (fMRI data averaged across participants to minimize noise) and
2. to individual participants’ data.

• The contributions of semantic features and a priori selected brain
locations to prediction accuracy were assessed in terms of alter-
native models that used randomized semantic features and brain
locations. The contribution of the voxel (feature) selection procedure
was assessed by using voxels outside the factor locations.

• The differences in the neural representations (activation levels in
factor locations) between words-in-context and words-in-isolation
were assessed by:

○ comparing the prediction accuracies of the models that use the data
acquired from words-in-sentences versus words-in-isolation, and
also by comparing the similarities between the observed and
predicted sentence images for the two models;

○ comparing the neural representations for words-in-3-different-con-
texts with words-in-isolation in the brain regions associated with
each of the three semantic factors.

• The generality of the neural representation of objects is evaluated by
a cross-study, cross-context, cross-participant classification of the 9
stimulus nouns.

Results

The prediction of the neural signature of a sentence was based on a
computational model of the association between the sum of the brain
activation patterns of the contextualized word concepts and the
semantic properties of the component concepts of the sentence. The
semantic-to-neural mapping was learned by the model at a concept-in-
context level. When the model was evaluated at the group level ((by
averaging the PSC data of all 10 participants and normalizing each
image to a mean of 0 and variance of 1 across voxels, to equate the
overall intensities of the images), the neural representations of
sentences were accurately predicted with a mean rank accuracy of
0.91 across the 36 sentences. (This accuracy is far above the chance
level accuracy of 0.5 (p < 0.0001 based on a 100,000-iteration random
permutation test; see Table S3 for similar accuracy from models using
different numbers of voxels from each location). When the list of
alternative sentences was expanded to include all 729 possible agent-
verb-object combinations, including nonsense combinations, the rank

accuracy of sentence prediction on the group aggregated fMRI data
increased from 0.91 to 0.94 (paired-sample t-test of the accuracy over
sentences, t35 = 3.6, p = 0.006), suggesting the nonsense sentences
were not very confusable by the model with the sensible ones. When
the list of alternative sentences was restricted to only the 36 stimulus
sentences, the rank accuracy was 0.86, significantly lower than among
all sensible sentences (paired sample t-test over sentences, t35 = 2.3, p
= 0.03) but still far above chance level (p < 0.0001). Further decoding
analyses computed rank accuracy based only on the sensible set of
sentences.

To evaluate the model at the individual participant level, the
decoding was performed on each participant's data. The mean rank
accuracy of the predictions across participants was 0.83. The accuracy
of each individual participant was reliably above chance level, with p <
0.0001, as shown in Fig. 3 (the analyses below evaluated the models on
an individual participant basis, unless otherwise specified). These
results show that the neural representation of a sentence that was
previously unseen by the model and containing previously unseen
words can be predicted by using an additive neurosemantic model of
the contextualized content word representations. Moreover, this high
level of sentence prediction accuracy was not due to any single word
class; the prediction accuracies for the agent, verb, and object classes
were 0.81, 0.85, and 0.84 respectively.

Comparison against three alternative models: randomizing semantic
features, randomizing brain locations, and selecting voxels outside the
factor spheres

The choice of semantic properties and the corresponding a priori
brain regions, which reflected the core theory underlying the model,
were further tested against random models. First, to test whether the
choice of semantic properties, i.e., the intermediate variables, con-
tributed to the reliable modeling of the neural signature of semantic
representations, a 10,000-iteration random permutation test was
performed in which the semantic variables were randomly assigned
to each word (i.e. the semantic vectors associated with the different
words were interchanged) while all the other aspects of the analysis
remained unchanged. This analysis was performed on the data
aggregated across participants. The neurosemantic variables performed
significantly better than the random variables (p < 0.0001). Second, to
test whether the choice of a priori regions contributed to the reliable
modeling of the neural signature, a 10,000-iteration random permuta-
tion test was performed on the aggregated data across participants in
which the locations of the spheres in the brain were randomly chosen
while all the other procedures remained unchanged. The a priori
neurosemantic regions performed significantly better than randomly
selected regions (p = 0.0001). These analyses demonstrate the ability of
the key components of the theory to account for the data in the
modeling of the neural representations of multi-concept sentences.
While future models may well outperform the current one, the current
model provides a first account that outperforms random models.

An additional exploratory analysis showed that voxels selected from
brain regions other than the factor-related spheres also contained
information about the sentences, resulting in a mean rank accuracy of
sentence prediction of 0.80, which is significantly lower than the
accuracy based on factor-related spheres (p < 0.05; see
Supplementary Materials). This finding suggests that relevant semantic
information is also present in brain areas other than the regions that
are most closely associated with the factors. That is not to say, however,
that the hypothesis of a commonality of semantically organized brain
locations in the brain is unnecessary, because (a) the locations of the
voxels selected outside the factor-related regions were inconsistent
across participants (Fig. S1; Table S4), (b) the a priori neurosemantic
regions performed better than this exploratory analysis in which the
voxels were chosen specifically based on the current dataset, (c) the
neurosemantic regions outperformed randomly selected locations, and
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(d) it was the intermediate semantic variables that provided the
hypothesis of what to model given the voxel activations. In addition,
the difference of the voxel selection methods between the main analysis
and this exploratory analysis empirically and intentionally was not
biased toward the former. The main analysis forced the selection of a
minimal number of voxels from each of the spheres, while this
exploratory analysis did not have such a restriction. The purpose of
constraining the distributed voxel selection in the main analysis was to
test the contributions from all factor-related locations rather than to
produce the highest possible decoding accuracy. When the selection of
voxels from factor-related locations was solely based on stability,
without the constraint of distributed selection across these locations,
the mean rank accuracy remained at 0.83. This result indicates that the
accuracy difference between using voxels within and outside the factor-
related locations was not due to the constraint of distributed voxel
selection.

Differences between the neural representation of words in context
versus words in isolation

The main findings reported above entailed the estimation of the
neural representations of individual concepts by averaging over the
brain images evoked by three sentences that contained that concept.
However, the success of this additivity-based modeling does not imply
that the neural representation of a sentence is no more than the sum of
the activation patterns of isolated words. In our estimation procedure,
the neural representations of the words were acquired while the words
were being processed in a sentence context. To directly examine this
issue, the fMRI data associated with reading individual word concepts
were also acquired from the same participants, when each of the
concepts was presented in isolation. The comparison of the concept
representations obtained in these two ways provided an illuminating
insight into the neural and semantic nature of sentence contexts effects.

One way to assess the two types of concept representations is to
compare their ability to predict new sentences. We found that the
sentence prediction was significantly less accurate based on the
activation patterns associated with the reading of single words in
isolation. The same approach as the main analysis was used to predict
the neural signature of a sentence, except that the estimation of the
neural signatures of each word concept was the activation patterns
evoked by reading and thinking about that word in isolation. The mean
accuracy of sentence prediction based on concept representations
obtained in isolation was 0.68 across participants, ranging from 0.60
to 0.81, significantly lower than the mean accuracy of 0.83 based on the
representations of component words estimated over other sentences
(paired-sample t-test, t9 = − 8.73, p < 0.0001). The relatively poor fit
provided by the words in isolation remained poor even when the
sentence modeling involved no predictive mapping: when the activa-
tion patterns of individual words were directly combined to predict the
sentence they constituted, the mean accuracy was 0.74, again signifi-
cantly lower than using the learned mapping between semantic
properties and neural signatures of words in context (paired-sample
t-test over participants, t9 =−3.9, p = 0.004). In addition to the two
approaches being compared in terms of prediction accuracies, they
were also compared using the (Fisher-transformed) correlation be-
tween the predicted and actual sentence images in the two cases. This
comparison showed a clear advantage in prediction accuracy of words
in sentences. The mean correlation was 0.56 for words-in-sentences
and 0.17 for words-in-isolation (F(1,9) = 188.4, p < 0.001).

Thus, the neural representations of isolated words provide a
significantly less accurate prediction of the neural representation of
the sentence that contains them, compared to the neural representation
of concepts obtained from a sentence context. One possible explanation
was that the contexts were similar in the training and testing sentences,
and so the contexts of all the training sentences may have modulated
the concept representations in a similar way, which was also similar to

the modulation effect occurring in the test sentence. The evidence
below was consistent with this explanation.

How context selectively modulates the meaning components of a
concept

The difference between the activation of a word encountered in a
sentence vs. in isolation was then directly assessed separately for each
semantic factor and each context type. The activation pattern of a word
encountered in sentences was estimated by the mean activation of the
sentences that contain the word, on the assumption that the repre-
sentations of the other words are averaged out. This comparison
focused on the activations within the a priori cortical regions asso-
ciated with the three semantic factors, as the decoding models did.
Because the content words of each sentence had been selected to be
associated with one of the factors, the theme of the sentences was thus
expected to be strongly associated with that factor. For example, the
words picnicker, bite, and carrot all have various meaning compo-
nents, but the sentence they formed, Picnicker bites carrot, conveyed a
salient theme of eating, the meaning component shared across the
concepts. Such a context might increase the activation of a component
word in the brain regions that represent the theme, relative to the
activation of the same word when presented in isolation. In the
example above, because the sentence context highlighted the eating
property of carrot, the neural representation in the eating-related
regions was expected to be increased when carrot was processed in
context as opposed to in isolation.

As hypothesized, the mean of the percent signal change (PSC) of
words-in-context was significantly greater than words-in-isolation in
the regions that were identified a priori as representing the semantic
properties emphasized by the context (paired-sample one-tailed t9 =
5.9, p = 0.0001). (All p-values in this section are Bonferroni-corrected
for the 3 factors). This effect was present for each of the three
categories of concepts in the brain locations associated with each
semantic factor respectively (as shown in Fig. 4); shelter: t9 = 8.8, p =
0.000015; manipulation: t9 = 2.5, p = 0.0493; eating: t9 = 3.1, p =
0.02. Moreover, words in some categories showed lower activation
when they were presented within a context than in isolation in regions

Fig. 4. Differences between the activation levels of words in sentences (obtained by
averaging the activation of all sentences that contain the word) and the activation of
words presented in isolation are plotted by the three semantic categories of contexts
(indicated by color) in three types of regions (indicated within vertical panels). The
activation levels were averaged across voxels in the regions associated with each semantic
factor. The mean percent signal change (PSC) of words in context was significantly
greater than the PSC of words in isolation in the home regions of the concepts for each
semantic category (indicated by asterisks on the upward-directed bars). The mean
percent signal change of words in context was also significantly lower than words in
isolation in the some of the non-home regions of some concepts.
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specialized for factors other than their home factor, such as the eating-
related concepts in shelter regions (t9 = −7.14, p = 0.0001, paired-
sample two-tailed t-test), suggesting the representation of the shelter
component in a word (e.g., a diner may sit at table in an indoor
restaurant) was suppressed when the sentence (e.g., Diner bites carrot)
concerned eating and defocused the spatial setting. Similarly, shelter-
related concepts in manipulation regions showed less activation when
presented in context (t9 = −7.15, p = 0.0001). There was also a non-
significant increase for eating-related concepts in manipulation re-
gions (t9 = 2.76, p = 0.13), suggesting that eating contexts may
highlight manipulation as well as eating.

Overall, these results indicate how context modulates the neural
representation of a word concept: context highlights the context-
relevant semantic component and downplays the irrelevant compo-
nents. Highlight and downplay are neurally realized as modulation of
the activation levels of the relevant components of the representation.
The neural signatures of context-derived concepts are dilated with
respect to the semantic factor that is shared by the other words in the
sentence, as proposed by a recent computational account of context
effects (Mitchell and Lapata, 2010). More generally, this finding
indicates the neural nature of semantically-tuned context effects.
According to this account, the context selectively elevates and enhances
the neural representation of the context-relevant component of the
concept's meaning, thus making it fit better into a similar predicted
context.

Predicting activation patterns of concrete nouns across studies

The generality of the findings was tested by decoding the word
concepts across two independent studies with two different sets of
participants. In the previous fMRI study, 11 participants read the 60
nouns, including the 9 object concepts in the current study, presented
in isolation (Just et al., 2010). A Gaussian Naïve Bayes classifier was
trained on data from the participants in the previous study for the 9
nouns, and tested on data of these nouns from each participant in the
current experiment, using only the 12 critical brain locations associated
with the three underlying factors. In the previous study, each of three
factors considered alone (corresponding to 3–5 of the 12 spheres)
made a similar contribution to the classification of the 60 concrete
nouns.

This cross-study, cross-context, cross-participant classification of
the 9 nouns resulted in a mean rank accuracy of 0.76 (range over
participants = 0.56 – 0.85). The accuracy was reliably above chance
level for 8 out of the 10 participants in the current study; the
significance level was p < 0.01 for 6 of these participants and p <
0.05 for 2 of them. Despite the vast difference in experimental
protocols and the fact that contexts modulate the neural representation
of concepts, the neural signature of word concepts was identifiable by a
pattern that resides in brain areas defined a priori using a theoreti-
cally-grounded analysis and independent fMRI training data obtained
from independent participants. This result speaks to the existence of
the generalizability of the neural representations of concepts in the a
priori specified brain regions across contexts, people, and studies.

Discussion

The main contributions of this study include (1) a generalizable
mapping that incorporates neurally driven and semantically interpre-
table properties of concepts in sentences, (2) the finding that words
presented in context characterize neural representations of concepts in
sentences with a similar context better than words presented in
isolation, and this seems to be due to (3) the finding that the semantic
context neurally highlights the context-relevant semantic component of
a concept and down-modulates the irrelevant component of a concept.

The capability of predicting the neural representations of multiple
concepts in a sentence, without using prior information about the

activation evoked by its content words, is general across word classes
and participants. The accurate predictions are based on learning the
activation patterns within a small set of brain locations that are
independently identified as encoding the neurosemantic factors under-
lying object (concrete noun) representations. The activation patterns
are modeled solely by a set of three intermediate features that encode
the semantic relatedness of a word concept to the three factors. Most
strikingly, this predictive theory generalizes beyond the concrete
objects to transitive verbs and nouns referring to occupations which
have never previously been decoded. Although the neural representa-
tion of concrete objects has been characterized with increasing
granularity over the past fifteen years in various modalities of stimuli
at various processing levels or across species (Carlson et al., 2003; Eger
et al., 2008; Haxby et al., 2001; Huth et al., 2012; Kriegeskorte et al.,
2008; Mitchell et al., 2008; Reddy et al., 2010; Shinkareva et al., 2011),
the characterization of neural representations of individual action
verbs or profession nouns has been meager (Kemmerer et al., 2008).
These representations may have been enriched in particular ways in the
current study by virtue of their roles in the sentences. This contextua-
lization may have contributed to the accurate prediction of the neural
representations of verbs and profession nouns, reflecting that at least
part of the meaning of a word is its use in language (Wittgenstein,
1953).

Another interesting finding was that a word's neural signature as it
occurred in a sentence was better predicted by that word's signature in
another similar sentence context than by that word's signature when it
occurred in isolation. Many previous studies have made excellent
progress in characterizing the rules of semantic composition, by
operating in abstract vector or matrix spaces that are derived from
the use of words, i.e., text corpora (Baroni and Zamparelli, 2010;
Coecke et al., 2010; Kintsch, 2001; Mitchell and Lapata, 2010;
Smolensky, 1990; Socher et al., 2012). The current model, operating
on fMRI images of sentences, utilized the observed neural data that
contained the context information and applied a simple additive model,
to deconstruct contextualized concepts and rebuild representations of
new sentences.

According to this account, a sentence context alters the neural
representation of a component of a concept, and that altered repre-
sentation provides a better prediction of that concept's instantiation in
a sentence that has a similar context. This phenomenon may be a
special case of semantic priming. Very many behavioral studies have
shown that the time to process a word (say, in a lexical decision task) is
decreased when it is preceded by a related word (e.g. dog is processed
faster if it is preceded by cow than by an unrelated word), and this is
referred to as a semantic priming effect. But fMRI studies have shown
that the semantic priming phenomenon is more complex than a simple
overall priming effect. The priming effect can be an increase or a
decrease in the brain activation, depending on the brain region and the
nature of the semantic relation (associative (e.g. key - chain) versus
categorical) (Kotz et al., 2002; Rissman et al., 2003; Rossell et al.,
2003; Sachs et al., 2011; Vuilleumier et al., 2002). In the current study,
the effect of a sentence context was a reliable increase in the activation
of only that part of the concept's representation that pertains to the
context. One can refer to this as a special case of a semantic priming
effect, distinguished by its content-selective effect.

Although the current study does not rule out the possibility that the
context effect could have arisen due to the simple juxtaposition of the
concepts in each sentence (as opposed to additionally being due to the
thematic structure of the sentence), previous studies have shown that
the same set of words arranged in different thematically structured
sentences are neurally differentiable (Frankland and Greene, 2015).
The dog in Dog chases cat is neurally distinguishable from the dog in
Cat chases dog, indicating that the neural encoding is more than just
the sum of the individual concept representations. In another study
using the same approach as the current one, a classifier was able to
reliably discriminate Monkey pats rabbit and Rabbit pats monkey and
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to correctly assign thematic roles to the two animal concepts (Wang
et al., in press). Thus, the thematic role encoding could be part of a
structured sentence representation that plays a role in determining
how the components of a concept are selectively modulated.

This study used sentences highly associated with the semantic
factors of shelter, manipulation and eating to investigate multi-
concept representations, so the generalization of the findings to a
much larger semantic space awaits further research. Although these
three factors can also characterize other frequent and typical concrete
concepts such as animals (Bauer and Just, 2015), there are surely other
semantic dimensions that may account for the neural representations
of concrete concepts to a comparable or greater degree, such animacy
(Capitani et al., 2003) or intentionality. A related limitation of the
current study is that the three dimensions are not sufficient to
characterize the difference between the concepts from the same
category. Because the granularity of the model was constrained by
the intermediate variables (semantic properties), when two concepts
received very similar ratings on all the three dimensions, such as
explorer and hiker (r = 0.986), the model was not able to capture the
neural representational difference between these concepts. Future
studies are needed to expand and deepen the model to apply to a
broader and richer semantic space.

Perhaps the greatest significance of this research is its potential for
providing an approach for neurally characterizing not just isolated
concepts but more complex thoughts composed of multiple concepts.
The findings here demonstrate the capability of identifying the
components of a simple proposition from its fMRI signature. As these
lines of research make further advances, the neural structure of
thoughts of increasing complexity may become understood as they
never have before.
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Supplementary Materials 

 

Optimal temporal window for decoding component word concepts that are part of a 

sentence 

Many previous studies (e.g. Just et al., 2010) have found that the optimal temporal 

window in the fMRI signal for decoding words presented in isolation is 2-5 s after the word’s 

presentation offset. To find the optimal temporal window for analysis of the main current study 

in which the three words in a sentence are presented in quick succession, a pilot study was run 

and several temporal windows were explored. The accuracy of decoding the concepts in each 

serial position (agents, verbs, and objects) was computed using a narrow temporal window 

containing only 2 s of images, but starting at various times relative to the stimulus onset. The 

results showed that agents, verbs, and objects were all most accurately predicted when the time 

window consisted of 5 images starting at 6 s from the sentence onset. This outcome determined 

the choice of temporal window used in analyzing the fMRI data associated with the words in the 

stimulus sentences.  
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Table S1. Behavioral ratings for the 27 content words on three semantic dimensions 

 

Word 

type 

Primary 

Dimension 

Word 

 

Behavioral ratings 

Shelter Manipulation Eating 

Agent 

Shelter 

explorer 3.94 4.06 2.71 

hiker 4.06 3.94 2.82 

tourist 3.76 2.29 5.06 

Manipulation 

carpenter 5.24 6.65 1.76 

mechanic 2.65 6.65 1.94 

plumber 3.06 6.35 2.41 

Eating 

diner 3.00 3.35 6.88 

glutton 1.53 2.12 6.47 

picnicker 1.94 2.65 6.65 

Verb 

Shelter 

enters 5.65 3.06 1.47 

exits 5.29 3.00 1.24 

repairs 4.18 6.65 1.18 

Manipulation 

drops 1.53 4.76 2.24 

grabs 1.59 6.18 3.53 

lifts 1.76 6.53 3.06 

Eating 

bites 1.18 3.35 6.65 

chews 1.41 3.65 6.82 

tastes 1.24 2.00 7.00 

Object 

Shelter 

car 5.29 4.47 2.06 

church 6.53 1.88 2.06 

house 7.00 2.76 3.29 

Manipulation 

hammer 2.71 6.47 1.24 

knife 1.41 6.35 5.65 

pliers 1.65 6.53 1.18 

Eating 

carrot 1.12 2.88 7.00 

celery 1.12 3.24 7.00 

tomato 1.12 2.29 7.00 

 

 

Behavioral ratings (on a scale of 1-7) are the averaged ratings of the salience of the content 

words to three semantic dimensions, obtained from an independent group of 17 participants.  
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Table S2. Locations (MNI centroid coordinates and radii) of the spheres associated with the three 

semantic factors 

 

Factor Sphere Location x y z Radius 
(mm) 

Shelter 

L Fusiform / Parahippocampal Gyrus (PPA) -32 -42 -18 6 

R Fusiform / Parahippocampal Gyrus (PPA) 26 -38 -20 4 

L Precuneus -12 -60 16 8 

R Precuneus 16 -54 14 8 

L Inf Temporal Gyrus -56 -56 -8 4 

Manipulation 

L Supramarginal Gyrus -60 -30 34 10 

L Postcentral/Supramarginal Gyrus -38 -40 48 12 

L Precentral Gyrus -54 4 10 6 

L Inf Temporal Gyrus -46 -70 -4 8 

Eating 

L Inf Frontal Gyrus -54 10 18 8 

L Mid/Inf Frontal Gyri -48 28 18 6 

L Inf Temporal Gyrus -52 -62 -14 4 
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Table S3. Rank accuracy of decoding sentences when different numbers of voxels were selected. 

The main analysis reported in the main text selected at least 3 voxels per region and 120 voxels 

in total. 

 

    

Mandatory minimal number of voxels selected per 

sphere 

    0 3 6 10 12 20 

Total number 

of voxels being 

selected 

50 0.88 0.90 NA NA NA NA 

100 0.90 0.91 0.90 NA NA NA 

120 0.91   0.91* 0.90 0.90 NA NA 

150 0.90 0.91 0.91 0.90 0.90 NA 

200 0.91 0.91 0.91 0.91 0.91 NA 

500 0.90 0.90 0.90 0.90 0.90 0.90 

* Main analysis 
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Table S4. Frequency of a voxel being selected in multiple participants when only voxels outside 

the factor-related spheres were considered. The largest commonality was in one voxel that was 

selected in 6 participants. The voxel selection procedure was the same as in the decoding 

analysis, except that no cross-validation was implemented. 

Frequency Number of voxels 

1 1385 

2 179 

3 53 

4 13 

5 3 

6 1 
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Figure S1. Locations of selected voxels when only locations outside the factor-related spheres 

were considered. Red, yellow, and white voxels were selected respectively for one, two, and 

three participants. Color map indicates frequencies of a voxel being selected over 10 participants. 
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