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Abstract
The critical role of the hippocampus in human learning has been illuminated by neuroimaging studies that increasingly 
improve the detail with which hippocampal function is understood. However, the hippocampal information developed with 
different types of imaging technologies is seldom integrated within a single investigation of the neural changes that occur 
during learning. Here, we show three different ways in which a small hippocampal region changes as the structures and 
names of a set of organic compounds are being learned, reflecting changes at the microstructural, informational, and corti-
cal network levels. The microstructural changes are sensed using measures of water diffusivity. The informational changes 
are assessed using machine learning of the neural representations of organic compounds as they are encoded in the fMRI-
measured activation levels of a set of hippocampal voxels. The changes in cortical networks are measured in terms of the 
functional connectivity between hippocampus and parietal regions. The co-location of these three hippocampal changes 
reflects that structure’s involvement in learning at all three levels of explanation, consistent with the multiple ways in which 
learning brings about neural change.
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Introduction

Learning is one of the most complex and yet fundamen-
tal processes that underlie human capabilities, enabling the 
acquisition of a huge amount of various types of knowl-
edge over a lifetime. Here, we describe the phenomenon 
of learning in a real-world task (learning organic molecu-
lar structures) in terms of three types of brain changes in 
approximately 1.3 cm3 of the left hippocampus. Different 
brain imaging modalities sensed three types of changes that 
occurred in this volume as a result of the learning: micro-
structural changes in tissues, informational changes (refer-
ring to encodings of the structure of individual organic 
molecules), and network-level synchronization changes 
(referring to organization among brain subsystems). The 

three concomitant changes in the same hippocampal loca-
tions reflect the anatomical, informational, and organiza-
tional brain changes that occur with learning.

One of the challenges of understanding the neural basis 
of learning is that it can be described at several scales of 
time and space. Our study describes brain changes that occur 
over the course of approximately 40 min and over volumes 
from 1 mm3 to distances of about 10 cm (between the hip-
pocampus and the parietal regions). This type of descrip-
tion is referred to as multimodal, in the sense that multiple 
brain imaging modalities (types) are used for the different 
characterizations. Notably, the three descriptions here all 
refer to the same neural tissues or brain locations. The mul-
tiple modalities all converge on a small distributed region 
of about 1.3 cm3; we use 22 functional 3 × 3 × 6-mm voxels 
for decoding in the hippocampus, where all three types of 
changes can be observed. This convergence results in a mul-
tilevel neural description of learning as people study molec-
ular structures that can occur in an organic chemistry course.

The hippocampus is strongly associated with spatial navi-
gation and memory and the formation of cognitive maps, 
including fine-grain information about its place cells and 
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grid cells (e.g., Morris et  al. 1982; O’Keefe and Nadel 
1978). Numerous fMRI studies have reported activation of 
the hippocampus during tasks that require spatial memory 
(e.g., Brown et al. 2014), although it is uncertain whether 
spatial processing in the absence of a mnemonic compo-
nent involves the hippocampus (Kim et al. 2015). Structural 
differences (enlargement) in the hippocampus have been 
reported to be associated with spatial memory abilities or 
tasks. Maguire et al. (2000) showed that the posterior hip-
pocampi of London taxi drivers with extensive navigation 
experience were larger than those of control participants.

Microstructural changes in hippocampus 
with learning

Recent research has used MR diffusion imaging to detect 
short-term microstructural changes in the hippocampus 
resulting from spatial learning in both animals and humans 
(Blumenfeld-Katzir et al. 2011; Keller and Just 2016; Sagi 
et al. 2012; Tavor et al. 2013). The studies in humans have 
all shown decreases in mean diffusivity (MD) in the left 
but not the right hippocampus (although Sagi et al. 2012 
did find MD decreases in the right parahippocampal gyrus). 
Although the physiological changes that could produce these 
changes in diffusion measures remain to be fully explored, 
the findings in rodents suggest that they are quantitatively 
associated with cellular biomarkers of synaptic change [syn-
aptophysin (SYN)], astrocytic change [glial fibrillary acidic 
protein (GFAP)], and long-term potentiation [brain-derived 
neurotrophic factor (BDNF)]. We expected to detect such 
hippocampal changes during the learning of the structure of 
organic compounds. Furthermore, we expected these micro-
structural changes to occur in the same hippocampal loca-
tions as changes in network synchronization and changes in 
informational content.

Network‑level changes with learning

Another neural property sensed by a magnetic-resonance 
modality is the synchronization of activation across distal 
brain regions [or functional connectivity, (FC)], providing 
a measure of the functional connectomics of the nodes of 
large scale brain networks (Biswal et al. 1995; Buchel et al. 
1999). The role of the hippocampus in memory consoli-
dation requires coordination with other brain regions in a 
large-scale network. During such consolidation, the func-
tional connectivity between the hippocampus and the other 
regions provides an index of such processing (van Kesteren 
et al. 2010). Increases in task-related FC are thought to 
reflect dynamic functional changes in inter-regional commu-
nication across networks of areas and could therefore result 
from short-term physiological and structural neuroplastic 
changes (e.g., LTP, synaptogenesis, astrocyte signaling). For 

example, Mack and colleagues (Mack et al. 2016) found 
increased FC between hippocampus and several frontal 
regions during concept updating. In the current study, a 
hippocampal region showing microstructural change might 
be expected to also show a change in FC with other regions 
involved in learning the structure of organic compounds.

Changes in the neural representation of concepts

A third MR-based capability makes it possible to identify 
the activation of a concept (such as apple or hammer) from 
its fMRI signature, by applying multivoxel pattern analy-
sis (MVPA) or machine learning to fMRI brain imaging 
data (Mitchell et al. 2008; Just et al. 2010). Among sev-
eral domains of concepts to which this approach has been 
applied, such as emotions, quantities, and social interac-
tions, the most relevant here is the study of physics concepts 
(Mason and Just 2016). It is possible to identify a physics 
concept such as gravity or frequency from its fMRI signa-
ture, and furthermore, the neural representation of a given 
concept is similar across all participants. Thus it should be 
possible to observe the neural emergence of a new concept 
of an organic compound. It would be particularly significant 
if a new neural concept emerged at the hippocampal location 
that showed microstructural changes and a network connec-
tivity change.

The ability to decode some of the informational content 
of the hippocampus has been demonstrated in several previ-
ous studies. Chadwick et al. (2010) demonstrated the abil-
ity to decode which of three events was being recalled by 
applying a classifier to the activation levels of hippocampal 
voxels. Bonnici et al. (2012) used MVPA to show that CA1 
and CA3 played a greater role in pattern completion than 
did other hippocampal subregions. Mack and Preston (2016) 
used MVPA to show that hippocampal representations are 
updated as additional knowledge about them is acquired. It 
is clear that conceptual content can be decoded from hip-
pocampus using MVPA.

The present study collected the data necessary to examine 
each of these neuroimaging metrics of learning in a single 
1-h MRI scanning session, focusing on the role of the hip-
pocampus and its change in structure, information repre-
sentation, and connectivity during paired-associate learning 
that had direct relevance to science education. The items 
to be learned were selected to have ecological validity for 
the typical introductory organic chemistry courses taught in 
high-school and college settings. Although some previous 
work has combined MVPA decoding and functional con-
nectivity analyses to examine paired-associate learning in 
the hippocampus (e.g., Mack and Preston 2016; Schlichting 
and Preston 2014; Schlichting et al. 2015), these have all 
involved arbitrary pairings of visually presented objects with 
other objects, with faces, or with natural scenes. A recent 
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study examined paired-associate learning of real words and 
previously unknown objects (pictures of types of flowers) 
using changes in diffusivity to track learning. The learn-
ing task in this case is educationally relevant, although the 
authors did not collect fMRI data in addition to the diffu-
sion data. Here we combine an educationally relevant task 
with acquisition of both BOLD fMRI data and diffusion data 
at multiple time points so that diffusivity changes, MVPA 
changes, and functional connectivity changes can all be 
examined simultaneously. The stimuli were 2D depictions 
of 3D visuospatial representations (colored sphere-and-rod 
models) of compounds studied in such settings. The learning 
involved the acquisition of the relationship between the visu-
ospatial representations of molecules and their verbal labels 
used in the International Union of Pure and Applied Chem-
istry (IUPAC) nomenclature. An advantage of these stimuli 
is that there is a morpho-semantic relationship between the 
words and the molecular structures when considered across 
items, which may contribute to faster learning and allow 
us to detect neuroplastic changes within a single scanning 
session.

The hypotheses tested in the experiment include (1) 
microstructural changes in the left hippocampus will occur 
with learning in a scientific domain; (2) functional connec-
tivity (FC) will increase with learning between the region 
of microstructural change in the left hippocampus and neo-
cortical regions; and (3) when a classifier is trained only 
on the initial perception of the to be learned spatial rep-
resentations of the compounds, it will be able to reliably 
classify the compounds by their retrieved fMRI signature in 
left hippocampus.

Materials and methods

Participants

Ten right-handed adults (9 females, 1 male between the ages 
of 19 and 37, mean = 24.7 years, SD = 5.2 years, 1 African 
American, 9 Caucasian) from the Carnegie Mellon Univer-
sity community participated. All participants gave signed 
informed consent approved by the Carnegie Mellon Institu-
tional Review Board. None of the participants had taken an 
Organic Chemistry course and were consequently unfamiliar 
with the structure and naming system of the organic com-
pounds presented during the study.

Although the sample size is modest, the findings from 
a similar paired-associate learning task that suggested that 
the effect size of changes in diffusivity within gray matter 
are quite large and consistent across participants. Hoffstet-
ter et al. (2017) acquired data from 15 participants, and our 
calculation of Cohen’s d based on the percentage changes 
and standard errors for the reliable percentage decreases in 

diffusivity reported in Table 1 of Hoffstetter et al. (2017) 
suggested that effect sizes between 1.2 and 1.4 were 
obtained, much higher than the d = 0.8 criteria that Cohen 
(1969) suggested for considering an effect to be “large”. This 
indicates that sample size required to detect such effects with 
80% power at p < .05 would be from 8–9 participants for a 
two-tailed t test.

Experimental paradigm

The nine organic compound images used in this experiment 
were originally taken from http://www.openm​olecu​les.
org. Images were then adapted to more clearly display their 
physical characteristics and to eliminate potential distracting 
aspects of each graphic. The names of the compounds had a 
systematic relation to the compound structures, but this sys-
tematicity was not described to the participants. [The prefix 
(eth-, prop-, but-) describes the number of carbon atoms 
present in a given molecule. The suffix (-ane, -ol, -oic acid) 
reflects how many oxygen atoms are present and how they 
bond to carbon and hydrogen atoms in the compound.]

MRI session

Each participant completed a series of different tasks involv-
ing the visualization or learning of each of the organic com-
pounds. Participants first completed a pre-learning exposure 
phase. During this phase participants were presented with 
each picture of the organic compounds without their names. 
This phase provided the unlabeled neural representation of 
the structure of each of the compounds. Each picture was 
presented for 3 s for a total of six repetitions, during which 
the participant attended to each compound and familiarized 
themselves with their structure. This was followed by a 7-s 
rest period during which the participant fixated on an “X” 
displayed in the center of the screen. There were three addi-
tional presentations of a fixation “X”, 17 s each, distributed 
across the session to provide a baseline measure.

Following the pre-learning exposure, participants per-
formed a sequence of three separate activities, a sequence 
through which they would iterate two times. The first of 
these activities was a learning phase in which each of the 
compound structures was shown paired with its name. Par-
ticipants were instructed to learn the pairing of the com-
pound names with the pictures of the structures.

After each block of the learning phase, participants were 
tested for their retention of the picture–name pairs. Each 
compound name was first presented for 1 s followed by a 
compound picture presented for 2 s. While the picture was 
on the screen, participants were told to indicate whether the 
name and picture were correctly or incorrectly paired, using 
two single button mice held by the participant in the scanner. 

http://www.openmolecules.org
http://www.openmolecules.org
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Participants completed two learning phase blocks and two 
name–picture retention test periods per block of study tasks.

After completing two iterations of a learning phase and 
a testing phase, participants performed a post-learning cued 
retrieval task. The name of the compound was the cue (pre-
sented for 3 s), during which time participants were asked to 
visualize (retrieve) the structure of the corresponding com-
pound. This was followed by a 7-s rest period during which 
the participant fixated on an “X”. The set of compound 
names was presented six times in different random orders. 
There were three additional presentations of a fixation “X”, 
17 s each, distributed across the session to provide a baseline 
measure. This sequence of a learning phase, testing phase, 
and post-learning visualization phase was completed by 
each participant twice. Figure 1 provides a schematic of the 
experimental session.

Image acquisition

All neuroimaging data were acquired on a Siemens Verio 
(Erlangen, Germany) 3.0 T scanner at the Scientific Imaging 
and Brain Research Center of Carnegie Mellon University 
with a 32-channel Siemens receive coil. Diffusion-weighted 
structural images were acquired using the multi-band 
sequences (version R011 for Syngo VB17A) provided by 
the University of Minnesota Center for Magnetic Reso-
nance Research (https​://www.cmrr.umn.edu/multi​band/ ). 
Diffusion-weighted and functional images were all collected 
as oblique-axial scans aligned with the anterior commis-
sure–posterior commissure (AC–PC) line at midline.

The diffusion-weighted images were collected with the 
monopolar cmrr_mbep2d_diff sequence (http://www.cmrr.
umn.edu/multi​band) in 54 slices (an ascending interleaved 
acquisition with 2.4-mm-thick slices and no inter-slice gap). 
The matrix was 96 × 96 and FOV was 230 mm, resulting 
in 2.4-mm isotropic voxels (TR = 2264 ms, TE = 74.8 ms, 

multi-band acceleration factor = 3, number of diffu-
sion encoded directions = 30, diffusion b value = 1000 s/
mm2, number of non-diffusion-encoded images = 4, band-
width = 1860 Hz/pixel, partial Fourier factor of 6/8). The 
30 diffusion encoding vectors were taken from standard 
Siemens gradient table. Three sets of these images were 
collected for each participant in the scanning session (one 
before the learning and again following each learning phase) 
with opposite phase encoding directions [anterior to poste-
rior (AP) and posterior to anterior (PA)] so that geometric 
distortions and eddy currents could be corrected using FSL 
v. 5.0 tools (topup and eddy). The total acquisition time for 
these two scans was 3 min and 20 s. Each scanning ses-
sion involved several functional scans using a gradient-echo 
echo-planar imaging pulse sequence with a repetition time of 
1000 ms, echo time of 25 ms, and a flip angle of 60°. Twenty 
5-mm slices, aligned along the anterior commissure–poste-
rior commissure line, were imaged with a 1-mm interslice 
gap and a 32-channel head coil. The acquisition matrix was 
64 × 64 with 3.125- × 3.125- × 5.0-mm in-plane resolution. 
Although this resolution of the functional data is somewhat 
coarser than that of the diffusion data, we have previously 
found this resolution to work well for machine learning clas-
sification (e.g., Just et al. 2010; Mitchell et al. 2008). Our 
choice of a lower resolution the fMRI acquisition was moti-
vated not only by the benefit of higher signal to noise ratio 
for decoding the neural signatures of the compounds (by 
virtue of aggregating over a larger voxel volume), but also 
by the desire for higher temporal resolution for the func-
tional connectivity analyses. Images were corrected for slice 
acquisition timing, motion, and linear trend, and they were 
normalized to the Montreal Neurological Institute template 
without changing voxel size (3.125 × 3.125 × 6 mm). There 
were various numbers of images acquired for each type of 
functional scan. The pre-exposure and post-learning retrieval 
tasks involved the acquisition of 605 images over 10 min, 

Fig. 1   Design of fMRI paradigm for the study. Participants were first 
exposed only to the pictures of hydrocarbon compounds, and data 
from the 7-s ISI was used to classify which item they were seeing. 
This was followed by presentation of the names with the pictures, and 
a test phase requiring them to decide if a picture corresponded to the 

preceding compound name. Participants then saw only the names and 
were instructed to retrieve and imagine an image of the compound 
during the delay interval. The learn-test-retrieve phases were repeated 
twice

https://www.cmrr.umn.edu/multiband/
http://www.cmrr.umn.edu/multiband
http://www.cmrr.umn.edu/multiband
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5 s. The two in-scanner learning-phase sessions involved the 
collection of 198 images over 3 min, 18 s.

Image processing and analysis

To allow comparison across imaging modalities, sessions, 
and participants a number of precise pre-processing correc-
tions and co-registrations of the imaging data were required. 
Preprocessing of the diffusion-weighted images (DWI) made 
use of tools from FSL v. 5.0.8 (http://fsl.fmrib​.ox.ac.uk/fsl/
fslwi​ki/) (Smith et al. 2004), and code written in-house 
for motion correction of diffusion data (Jung 2010; Jung 
et al. 2013) running under MATLAB®, v. R2011a (http://
www.mathw​orks.com/produ​cts/matla​b). Brain-only masks 
of images at each stage of the following procedures were 
extracted using the FSL’s “bet2”. Estimation and correc-
tion of geometric distortion was carried out for each session 
(pre-training and post-training) using the eight non-diffu-
sion-weighted images (b value = 0), four collected with each 
phase encoding direction (A > P, P > A) (Andersson et al. 
2003). FSL’s “topup” tool was first used to estimate a warp-
field and the data were subsequently resliced and the two 
diffusion runs averaged using the “applytopup” tool. FSL’s 
“eddy” tool was then used to simultaneously model the eddy 
current effects and head motion effects in the run-averaged 
data using default values for all parameters (i.e., a quadratic 
spatial model, no spatial filtering, and five iterations of the 
non-linear estimation).

Additional pre-processing involved generation of an esti-
mated diffusion-weighted image for each corrected diffu-
sion-weighted image on the basis of average signal intensi-
ties across the corrected un-weighted (b value = 0) images, 
a method proposed by Bai and Alexander (2008) and shown 
to improve the co-registration of diffusion-weighted data 
collected with even relatively low b values (1200 s/mm2). 
This is similar to the well-known UNDISTORT (Using Non-
Distorted Images to Simulate a Template of the Registra-
tion Target) method proposed by Ben-Amitay et al. (2012), 
except that a simple diffusion tensor model is used rather 
than the more complex Composite Hindered and Restricted 
Model of Diffusion (CHARMED) proposed by Assaf and 
Basser (2005). It is also essentially the same as a method 
proposed by Nam and Park (2011) that used a diffusion ten-
sor model to simulate the high b value image templates, but 
also incorporated a non-linear registration method for the 
motion correction. The estimation and reslicing was car-
ried out with FSL’s “mcflirt” program, using a correlation 
ratio cost function. Finally, each of the affine transforma-
tion matrices computed above were combined, and a single 
reslicing of the original data was carried out with FSL’s 
“applywarp” and the direction of the diffusion vectors were 
rotated on the basis of this combined transformation prior 

to fitting a weighted-least squared diffusion tensor model 
with FSL’s “dtifit.”

An additional co-registration was required to compare the 
before and after repeated measures of DTI metrics within 
each participant. The fractional anisotropy (FA) images 
calculated for each session provide exquisite contrast for 
carrying out this co-registration and so these were used 
in preference to the mean of the un-weighted (b value = 0) 
images, and because FA is a normalized measure (the stand-
ard deviation of three eigenvalues from the DTI fit), changes 
in signal due to scanner drift between acquisitions can be 
ignored. Specifically, a forward (pre- to post-training) and 
backward (post- to pre-training) 12-parameter affine trans-
formation matrix was calculated with FSL’s “flirt” for each 
participant’s two FA images, and the half-way transforma-
tion matrix of each was used to re-slice the data into a posi-
tion half-way between the two FA images. This method 
ensures that both the pre- and post-training images undergo 
comparable spatial blurring during the re-slicing process.

To allow comparison across participants, we used 
FSL’s “fnirt” tool with default parameters for FA to FA 
non-linear co-registration, to estimate the warping from 
each participant’s pre- and post-training FA map to the 
FMRIB_FA_1 mm template included in FSL. This non-
linear warping was applied to each participant’s mean dif-
fusivity image (the average of the three eigenvalues resulting 
from the tensor fit). Following the initial transformation to 
the FMRIB_FA_1 mm template, a study specific template 
was created by averaging all FA data from both groups and 
both sessions, and this was used as the target for final non-
linear spatial normalization of each FA image. These final 
warp coefficients were then applied to the mean diffusivity 
maps for each participant. In contrast to the approach used 
to compare FA across participants using Tract-based Spatial 
Statistics (Smith et al. 2006), instead of projecting the dif-
fusivity data to the white matter skeleton defined by peak 
FA, we used a voxel-wise analysis restricted to the left and 
right hippocampus [as defined by the automated anatomical 
labeling (AAL) atlas]. The specific hypothesis that structural 
changes in the form of decreased MD would be found in 
the left hippocampus was tested by calculating voxel-wise 
changes in this region of interest (and separately in the right 
hippocampus for comparison). Analysis of changes in mean 
diffusivity within these regions was then tested by compar-
ing pre- and post-training data as a paired t test across all 
participants family wise-error-corrected for multiple com-
parisons using Gaussian random field theory and the cluster 
extent threshold with a cluster forming t threshold of 2.00.

Pre-processing of the T2*-weighted EPI data was car-
ried out with a combination of tools from MATLAB® 
v. R2011a, SPM12, and FSL v. 5.0.8. Because the posi-
tion of the head was not perfectly aligned between ses-
sions, we first corrected each run separately for geometric 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://www.mathworks.com/products/matlab
http://www.mathworks.com/products/matlab
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distortions using the gradient-echo field map collected 
within the same session and FSL’s “prelude” and “fugue” 
tools. Motion was then estimated separately within each 
run with FSL’s “mcflirt” using default (six-parameter aff-
ine) co-registration, reference as the temporally middle 
volume acquired, normalized correlation cost functions 
settings (Jenkinson et al. 2002), and the “fsl_motion_out-
liers” script was used to calculate the temporal deriva-
tive of the root-mean-square variance (DVARs) (Power 
et al. 2012) between each image and the next. Motion 
outliers were identified as any point with a DVAR value 
greater that the 75th percentile + 1.5 times the interquartile 
range. Indices for images considered outliers were saved 
in a regressor so that their effect could be removed (i.e., 
“scrubbed”) prior to functional connectivity analyses.

To allow comparison across sessions, a co-registration 
strategy similar to that used for the DWI data was car-
ried out. The mean of each motion corrected fMRI run 
was used to calculate a forward (pre- to post-training) 
and backward (post- to pre-training) six-parameter affine 
transformation matrix with FSL’s “flirt” tool. The half-
way transformation matrix of each was then saved to later 
re-slice the data into a position half-way between the two 
means. These means were averaged for each participant 
and a non-linear transformation between each participant’s 
mean EPI image and the MNI averaged 152-participant 
T2-weighted template was carried out using FSL’s “fnirt” 
tool with default registration schedule parameters for intra-
modal T2-weighted registration. All participants’ data 
were then averaged to create a study specific EPI template, 
and the transformation from the participant’s mean to this 
new template was saved as the final non-linear warping. 
(Note that final re-slicing of the data was all done in a 
single step that concatenated all the pre-calculated trans-
formation matrices together and used a final sync inter-
polation to an MNI space with the same resolution as the 
acquired functional data.)

For the analysis of functional connectivity, a region of 
interest was defined taking the 100 1-mm3 voxels from the 
diffusion data showing the largest decrease in mean diffu-
sivity for each participant distributed throughout the AAL-
defined left hippocampus. The averaged time-series of all 
voxels within each region of interest defined by the auto-
mated anatomical labeling (AAL) atlas (Tzourio-Mazoyer 
et al. 2002) were also calculated for each participant, and 
all pairwise correlations were calculated among regions 
of interest, Fisher-z-transformed, and submitted to a group 
paired t test. The analysis of intrinsic functional connec-
tivity was identical, except that spatially normalized data 
were band pass filtered using FSL’s “fslmaths” tool, retain-
ing frequencies between approximately 0.01 Hz (high-pass 
sigma = 50) and 0.1 Hz (low-pass sigma = 5).

MVPA classification

The percentage signal change relative to the fixation con-
dition was computed at each gray-matter voxel for each 
stimulus presentation. The main input measure for the sub-
sequent analyses consisted of the mean activation level 
over the six brain images acquired within a 4-s window, 
offset 6 s from the stimulus onset (to account for the delay 
in hemodynamic response). The percentage signal-change 
data of the voxels in the mean image for each word were 
then converted to z-scores.

A critical step in multi-voxel pattern analysis is the 
selection of a relatively small set of voxels likely to pro-
vide systematic information about the identity of the 
neural representation that is active without contributing 
additional noise. The approach to selection taken here 
was to first identify those voxels that are stable across 
the multiple presentations of the set of items, and then 
to select from within the most stable voxels those that 
show evidence of microstructural change. Voxel stability 
is measured by the correlation of activation across the set 
of items and averaged over the multiple pairs of presenta-
tions. High stability is thus an analytic for the replicabil-
ity of the voxel’s activity in its participation in the neural 
representation of the item. The voxel selection is based 
on only the classifier’s training data for the model in each 
cross-validation fold and is then applied to the test data.

The multivoxel pattern analyses used a Gaussian Naïve 
Bayes (GNB) classifier (using pooled variance) (support 
vector machine classifiers were also explored but found to 
provide no significant advantage in item classification). The 
classifier here is a mapping function f of the form f: voxel 
activation levels X1, …, Xn → Yi, i = 1, …, m, where Yi are 
stimulus items and where voxel activation levels are mean 
activation levels of the selected voxels. GNB is a discrimi-
native classifier that models the joint distribution of class Y 
and attributes X1,…, Xn, which are conditionally independent 
given Y. The rank accuracy (hereafter, simply “accuracy”) 
of the classification is the normalized rank of the correct 
label in the classifier’s posterior-probability-ordered list of 
classes. If the classifier were operating at chance, the correct 
label would on average appear in the middle of the ranked 
list, producing a chance level accuracy of 0.50. Accuracies 
are calculated for each item in each fold and then averaged 
across folds, and then across items. The cutoff for determin-
ing whether rank accuracy exceeds that expected by chance 
are obtained using Monte Carlo testing with 10,000 ran-
domly generated data sets given the number of items and 
the number of folds, and performing the same calculations 
to obtain a normal probability distribution with mu and 
sigma estimated from the random data. The machine learn-
ing establishes a measure of the correspondence between the 
stimulus items and the activation patterns.
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Results

All data were collected in a single scanning session. Dif-
fusion-weighted MRI data were collected prior to training, 
and following each of the two testing sessions. Functional 
MRI data were collected during each phase in a single scan-
ning session, and the cycle of training, testing, and retriev-
ing the visuo-spatial representation of the compound when 
provided with only the names was repeated twice following 
pre-exposure to the stimuli.

Microstructural changes in hippocampus 
following learning, assessed 
with diffusion‑weighted imaging

A region of the left hippocampus showed a reliable decrease 
in mean diffusivity (MD) between the pre-learning and post-
learning DTI scans [peak t(9) = 2.72, p < .5, corrected for 
cluster extent at a height threshold of t = 2.00]. The center of 
mass of the change was at MNI coordinates − 25, − 18, − 16. 
This cluster is approximately 420 mm3 in volume or 13% 
of the L hippocampus and is shown in Fig. 2. This location 
is approximately 1 cm more posterior and superior to the 
one previously found following spatial route learning (e.g., 
Keller and Just 2016; Sagi et al. 2012). The location of this 
changed region can be localized probabilistically to different 
L. hippocampal subregions using the Juelich Histological 
atlas in FSL v.5.0, resulting in a probability of 57% for CA, 
50% for the dentate gyrus, 34% for the subiculum.

As noted in the methods, our modest sample size was 
still estimated to be large enough to detect the size of effects 
found for gray matter diffusivity changes following learning 
in a recent study (Hoffstetter et al. 2017). For the present 
data, a post hoc power analysis yielded a similarly large 
effect size. Cohen’s d (adjusted for a paired t test by the 
method recommended by Dunlop et al. (1996), was 1.15, 

indicating that for 80% power at p < .05 for a one tailed test, 
we should have planned to test at least seven participants). 
Unlike many conventional fMRI studies, our analyses of 
changes in mean diffusivity seem to benefit from relatively 
low variability across participants compared to the relatively 
large decreases in MD that can be induced by learning.

We acquired the DWI data at a higher spatial resolution 
than the fMRI data upon which the remaining analyses 
were based to maximize the possibility of isolating which 
of the anatomically differentiable hippocampal regions were 
affected by the neuroplasticity. To verify that we obtained 
similar results when the diffusion data were resliced to 
match the resolution of the fMRI data, we carried out the 
same analysis of the diffusion data with spatial normaliza-
tion performed using the version of the MNI template resa-
mpled to match the acquired resolution of the functional 
data. The results were similar to those reported above, 
although the location of the largest group difference in MD 
was slightly more anterior and inferior to that found with 
the higher resolution data [MNI coordinates − 28, − 9, − 20; 
t(9) = 2.54, p < .05].

Informational changes in hippocampus 
following learning, assessed with MVPA 
classification

If the neural representations of the stimulus compound struc-
tures become differentiated with learning, then a classifier 
should be able to identify which item was being cued (by 
the item’s name) when the item structure was retrieved. A 
Gaussian naïve Bayes classifier was trained only on fMRI 
data from the pre-learning picture presentation blocks at the 
beginning of the study (which established the neural rep-
resentation of each item’s structure before any item names 
were introduced). The classifier was then tested on its ability 
to identify the neural representation of each item’s structure 

Fig. 2   Region of left hippocam-
pus (in red) showing decreased 
mean diffusivity (MD) after 
learning. Hippocampal subre-
gions: CA shown in blue; den-
tate gyrus in green; subiculum 
in yellow
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during the last post-learning test phase when participants 
were cued with only the item name.

To test whether the same left hippocampal region that 
showed a diffusivity change also encoded the learned associ-
ation (between the item’s name and its structure), the voxels 
for MVPA classification were selected for each individual 
participant by considering the 100 1-mm3 voxels in that 
participant’s left hippocampus that had the highest mean 
diffusivity decrease with learning. The features selected for 
use in classification were any 3.125 × 3.125 × 6 mm func-
tional (fMRI) voxel that contained one or more of the 100 
1-mm3 voxels whose mean diffusivity had decreased most. 
This resulted in a selection of a mean of 22.2 functional 
voxels per participant (range 16–30) which constitutes a 
mean volume of 1.3 cm3 or about 40% of the total L. hip-
pocampal volume. To verify that these selected features 
(functional voxels) were predominantly co-located with the 
area of decreased MD in the left hippocampus in the group 
analysis of the diffusion data, we constructed of “hit-map” 
of the functional voxels selected across all participants and 
calculated the overlap between these voxels and the region of 
decreased MD shown in Fig. 2. The volume of the functional 
voxels selected for at least 4 of the 10 participants was 820 
mm3 and their overlap with the 420 mm3 region of decreased 
MD in the group analysis was nearly complete (410 mm3 
of shared tissue). The temporal window within which the 

activation of these functional voxels was analyzed spanned 
from 6 to 9 s after stimulus onset.

The classification accuracy after the second iteration of 
learning using these voxels in the left hippocampus with 
decreased mean diffusivity produced a rank accuracy of 0.57, 
reliably above chance level (p < .05), as shown in Fig. 3. 
This result shows that retrieved mnemonic representations 
of the structure of individual items can be decoded from 
the hippocampus, consistent with a theorized hippocampal 
function of pattern separation (learning distinctions between 
patterns). Furthermore, this classification accuracy reliably 
increased from the 0.48 level obtained after the first iteration 
of learning [t(9) = 2.23, p = .05]. In contrast, voxels selected 
in the same way from the right hippocampus did not result 
in classification accuracy above chance at either time point.

The ability to decode the retrieved structural representa-
tion of the compounds in response to the words was also 
examined in a number of neocortical regions that might 
also be involved in the neural representation of the spatial 
structure of the compounds (namely, superior and inferior 
parietal lobules, fusiform gyrus, parahippocampal gyrus, 
superior and inferior extrastriate occipital regions, and cal-
carine sulcus). The functional voxels used as features for the 
classification were each participant’s 60 most stable voxels 
within each region, with regions defined by AAL parcel-
lation (automated anatomical labeling atlas). The temporal 

Fig. 3   Mean rank accuracy of the GNB classifier trained on only 
activation evoked by the initial unlabeled pictures presented prior to 
learning the compounds’ names. The classifier then predicted which 
of nine molecular structures a participant was retrieving when they 
were given only the name of the molecule as a cue, at two time points 
(after first and second learning session). The p < .05 critical value for 

rank accuracy greater than chance is shown by the dashed horizontal 
line. Region abbreviations for regions displaying reliable classifica-
tion accuracy after the second learning session: L and R hemisphere, 
HIP hippocampus, IPS intraparietal sulcus, IPL inferior parietal lob-
ule, SPL superior parietal lobule. Error bars indicate standard error of 
the mean
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window of the functional voxels in the classifier’s training 
set spanned from 6 to 9 s post stimulus onset, and the test set 
used a window of 8 to 11 s. As above, the training set was 
based on data evoked by the unnamed pictures presented 
during the pre-learning phase. The test sets were acquired 
during the post-learning test phase, in which only the name 
of the compound was presented.

Three regions (L inferior parietal and L and R intrapa-
rietal sulcus), all of which are associated with spatial rep-
resentation, showed a significant increase in classification 
accuracy between the two learning sessions [t(9) = 2.76; 
t(9) = 2.41; t(9) = 2.67, respectively, p values < .05, 1-tailed 
t tests] as shown in Fig. 3. (There was also a reliable over-
all main effect of learning session [F(1, 9) = 7.65, p < .05].) 
After the second block of learning, L hippocampus and 6 
parietal areas (left and right inferior, superior, and intrapa-
rietal) showed rank classification accuracy above chance, as 
shown in Fig. 3. Thus, the molecular structure of the com-
pounds can be reliably decoded from the L hippocampus and 
from several parietal regions after two iterations of learning 
trials.

Functional connectivity changes involving 
hippocampus, assessed with task‑based fMRI

There is typically an increase in inter-regional functional 
connectivity (increased synchronization of activation in 
involved regions) with learning (Büchel et al. 1999; Schipul 
et al. 2012). The analysis here tested whether the same left 
hippocampal voxels that showed a mean diffusivity change 
and an informational change were also involved in binding 
together the activity of learning-relevant neocortical areas. 
(The learning-relevant areas are assumed to be those that 
contain the neural representations of the molecular struc-
tures of the organic compounds, as revealed by the MVPA 
analyses above.) The hippocampal voxels within each partic-
ipant with the largest mean diffusivity change should show 
an increase in functional connectivity with these regions 
between the time of the initial baseline picture presentations 
(when participants did not know the item names), and the 
time of the scans following the learning trials (when par-
ticipants were actively attempting to visualize the molecular 
structure given the name). We therefore compared the func-
tional connectivity between these individually chosen left 
hippocampal voxels and the six parietal regions that showed 
a reliable classification accuracy. Four of these six parietal 
regions showed a reliable increase in their functional con-
nectivity with the hippocampal region after the initial block 
of learning, namely left inferior parietal [L IPL, t(9) = 2.99], 
left superior parietal [L SPL, t(9) = 3.19], left intraparietal 
sulcus [L IPS, t(9) = 3.19], and right intraparietal sulcus [R 
IPS, t(9) = 3.38], (all p < .05). (The other 2 regions showed 
a non-reliable increase.) Thus, the microstructurally altered 

voxels of the left hippocampus establish heightened syn-
chronization with bi-lateral parietal regions associated with 
spatial processing. The functional connectivity increased 
from the time before the association between the item names 
and item structures were known, to the time when they had 
been learned. Notably, a similar analysis of connectivity 
between voxels in the right hippocampus showing the larg-
est decrease in diffusivity and these bilateral parietal regions 
showed no change in synchronization of activation, indicat-
ing a clear hemispheric difference in the spatial specificity 
of the diffusion and connectivity changes.

In addition to the increase in the task-related FC between 
the left hippocampal region of microstructural change and 
parietal regions, there was also an increase in the intrinsic 
connectivity between the left hippocampal region of MD 
decrease and these parietal regions. This result was obtained 
by performing a similar analysis on the same data which 
was low-pass filtered at 0.1 Hz. In this analysis there were 
significant increases in intrinsic connectivity with the left 
superior parietal lobule [L SPL, t(9) = 3.18, p < .05], and the 
right superior parietal lobule [R SPL, t(9) = 2.92, p < .05]. 
[There were also trends toward similar increases in intrinsic 
connectivity with the left and right inferior parietal lobules 
t(9) = 2.10, p < .10, and t(9) = 2.22, p < .10, respectively.]

Behavioral measure of learning

The multiple converging neural measures of learning 
described above corresponded well to the behaviorally 
measured learning of the association between the names 
and the structures of the molecules. After the second 
learning session, the mean performance was 87.8% cor-
rect (8 out of 9 items correct). The increase in behavioral 
accuracy over learning blocks was approximately linear 
(R2 = 0.99), as shown in Fig. 4, and the increase was reliable 
[F(3,27) = 5.86, p < .005]. Reaction times for the behavioral 
judgments also decreased monotonically across the four test 
blocks and the decrease was well-fit by a power function 
(R2 = 0.89).

Discussion

The study found three types of neural changes in the same 
brain tissues (~ 1.3 cm3) in the left hippocampus while 
participants reliably learned to associate the spatial con-
figuration of a set of organic compounds with their names. 
The informational change concerning the retrieved struc-
ture of individual compounds came to be present in dis-
tributed left hippocampal locations, indicated by the clas-
sifier’s ability to reliably identify the organic molecule on 
the basis of its retrieved spatial configuration (when par-
ticipants were prompted by only the compound’s name). 
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This outcome is similar to several previous findings of hip-
pocampal informational change with learning (e.g., Mack 
and Preston 2016). During the same learning period of 
40 min and within a similar gray matter location, the mean 
diffusivity reliably decreased, indicating that microstruc-
tural neuroplastic changes in the dentate gyrus and CA 
were occurring. Such microstructural changes play a role 
in consolidating the learned information. A third type of 
change occurring during this same time period and at the 
same locations was the change in functional connections 
that were being established to other cortical regions. The 
co-location of these three types of neural changes during 
concept learning indicates the centrality of small portions 
of the left hippocampus in the neural establishing of usa-
ble new knowledge of the spatial properties of a concept, 
and also illustrates some of the learning mechanisms that 
are involved.

The decoding of individual compounds from the hip-
pocampus demonstrates two of this region’s main postulated 
functions: pattern separation and pattern completion (Marr 
1971). The finding that a classifier can differentiate among 
the nine different compounds provides evidence of pattern 
separation, the distinctive encoding of similar learning epi-
sodes, allowing distinct long-term access to very similar 
information. This rapid encoding of ongoing episodic infor-
mation is thought to be carried out by a relatively simple 
autoassociative network involving at least the dentate gyrus.

The ability to retrieve the spatial configuration of a com-
pound given only its name (indicated by a classifier’s ability 
to identify the retrieved spatial configuration of the named 
compound) demonstrates pattern completion. The item 
name was only a fragment of the activity pattern present at 

encoding and yet the spatial configuration activity present 
during the episode was retrieved.

Marr’s analysis of the connection properties of differ-
ent regions and different cell types within the hippocam-
pus forms much of the basis of the current theories of how 
hippocampal subregions of the dentate gyrus and cornus 
ammonis accomplish the two necessary functions, and sub-
sequent computational modeling of the processes has been 
consistent with the basic theory (e.g., O’Reilly and McClel-
land 1994; O’Reilly and Rudy 2000). The current findings 
demonstrate in detail the presence of the postulated pattern 
separation function in the dentate gyrus.

Functional imaging has supported the idea that dorsal 
hippocampus including the dentate gyrus and CA3, is pri-
marily involved in pattern separation, and that the ventral 
hippocampus including the subiculum and CA1 is relatively 
more involved in pattern completion (Bakker et al. 2008; 
Lacy et al. 2010; Yassa and Stark 2011). High-resolution 
fMRI of the hippocampus has allowed MVPA methods to be 
applied to these separate hippocampal fields has attempted to 
provide more fine-grain dissociations and suggests that the 
dentate gyrus and CA3 are specialized for pattern separation 
and that CA1 is more likely involved in pattern completion 
(Berron et al. 2016; Bonnici et al. 2012). The present func-
tional data do not allow us to distinguish these functions, 
likely due to the relative coarseness of the MRI resolution. 
However, because both functions are involved in the learning 
task, it is not surprising that the decrease in diffusion within 
the hippocampus with learning extended across both of these 
subfields of the hippocampus.

The MVPA/machine learning approach makes it possible 
to watch the neural representations of new concepts grow 
in the brains of learners as the concepts are being acquired 
(Bauer and Just 2015). The neural representations become 
more distinct and identifiable as participants gain additional 
exposure to the concepts. This capability opens the possibil-
ity of investigating the neural acquisition of individual new 
STEM concepts, to determine which facets of the learning 
and instruction may be amenable to enhancement.

The ability to identify the neural representation of a 
new concept as it is being learned opens the possibility of 
cognitive neuroscience findings informing and enhancing 
instructional methods. It is possible to assess several differ-
ent types of neural properties of concept representations in 
STEM learners, and to determine how these properties are 
related to behavioral indices of learning. One example is that 
a given participant’s neural representations of a set of key 
concepts can be compared to those of a successful advanced 
student, to determine whether neural similarity is an accu-
rate predictor of academic mastery of the concepts. Another 
example is that the intrinsic reliability and identifiability of 
a participant’s neural representations might be predictive 
of academic mastery of the concepts. A third possibility is 

Fig. 4   Mean behavioral accuracy in the test blocks of the experiment. 
Blocks 1 and 2 were completed prior to the first post-learning MVPA 
and blocks 3 and 4 were completed between he first and second post-
learning MVPA scans. Error bars indicate standard error of the mean
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that the dimensional structure of the neural representations 
might analyzed with the goal of revealing which facets of 
the concept may be underdeveloped and maybe be enhanced 
with targeted additional instruction. The neural properties 
of a concept representation have the potential to substan-
tially contribute to prediction of learning outcomes above 
and beyond what behavioral measures can predict. In the 
long term, it may be possible to develop combined neural 
and behavioral models to guide the design of in-classroom 
interventions that leverage the new neural data beyond clas-
sical behavioral measures.

The study leaves many interesting questions unanswered, 
but some of them seem readily addressable. First, it remains 
unclear whether the three types of neural changes in left 
hippocampus are specific to the learning of spatial informa-
tion or whether some or all of them also occur at the same 
location and with similar properties with the learning of 
other, non-spatial types of information. Second, the left lat-
eralization of the hippocampal neuroplasticity in this study 
and in previous studies is somewhat surprising. Although 
it could be argued that this hemispheric specificity is due 
to the linguistic content in the present task, that explana-
tion is less tenable for studies showing left lateralized hip-
pocampal changes in diffusivity after practice at non-verbal 
spatial memory tasks in humans (e.g., Keller and Just 2016; 
Tavor et al. 2013). Interestingly though, recent studies in 
mice have found that optogenetic stimulation differentially 
affects plasticity in left and right hippocampus (Kohl et al. 
2011) and that optogenetic “silencing” of the left hippocam-
pus but not the right hippocampus, impairs performance on 
an associative spatial memory task (Shipton et al. 2014). 
Third, there may also be changes in associated white mat-
ter myelination or structural integrity at the hippocampal 
parcel identified here, but the time frame of 40 min may be 
too short for such changes to be measurable. We have previ-
ously provided evidence of such myelination changes fol-
lowing 100 h of reading instruction (Keller and Just 2009), 
and Hofstetter et al. (2017) have recently shown diffusion 
changes in both gray and white matter following 2 h of new 
word learning. Finally, future work applying these methods 
to a wide variety of educational materials in many fields is 
clearly of interest.

The main focus of the findings is the integration of three 
types of neural changes in left hippocampus with learning. 
As new methods for assessing neural changes proliferate, it 
sometimes becomes difficult to apply multiple assessments 
within the same study. The three magnetic-resonance-based 
sensing technologies used here converge to show the co-
location of these different types of neural changes. The diffu-
sivity-based sensing of microstructural change with learning 
is the newest of the three modalities, and it produces, at least 
in this study, the finest grain of spatial granularity. To fully 
understand a phenomenon as complex as human learning 

will likely require increasingly integrated accounts of neural 
changes sensed in different ways.
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