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The ability to decode letters into language sounds is essential for reading success, and accurate
identification of children at high risk for decoding impairment is critical for reducing the frequency and
severity of reading impairment. We examined the utility of behavioral (standardized tests), and functional
and structural neuroimaging measures taken with children at the beginning of a school year for predicting
their decoding ability at the end of that school year. Specific patterns of brain activation during
phonological processing and morphology, as revealed by voxel-based morphometry (VBM) of gray and
white matter densities, predicted later decoding ability. Further, a model combining behavioral and
neuroimaging measures predicted decoding outcome significantly better than either behavioral or
neuroimaging models alone. Results were validated using cross-validation methods. These findings
suggest that neuroimaging methods may be useful in enhancing the early identification of children at risk
for poor decoding and reading skills.
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The relation between education and cognitive neuroscience is
exciting but controversial. It is exciting because noninvasive brain
imaging methods are providing unprecedented views of the struc-
tural and functional development of the child’s brain, and such
new views of the maturing brain may provide novel information
relevant for enhancing educational practices (Goswami, 2006).
The relation between education and neuroscience is controversial
because many links represent speculative and potentially flawed
interpretations associating animal experimentation with human
education (Bruer, 2002). For this reason, the relation between
education and neuroscience has been called “a bridge too far”
(Bruer, 1997, p. 4).

A critical issue in relating education and cognitive neuroscience
is that education involves behavioral goals that are most directly
evaluated by behavioral measures. For example, the most direct
measures of the effectiveness of reading instruction are behavioral
tests of reading comprehension or fluency or of the subskills of
reading such as single-word decoding. Cognitive neuroscience
studies of children aim to delineate the neural substrates of behav-
iors, such as reading. For example, a number of studies have found
neural correlates of reading in typical-reading or dyslexic children
(for reviews, see Dehaene, Cohen, Sigman, & Vinckier, 2005;
Eden & Zeffiro, 1998; McCandliss, Cohen, & Dehaene, 2003;
Price & Mechelli, 2005; S. E. Shaywitz & Shaywitz, 2005). These
studies illuminate the neurobiological substrates of reading, but it
is unknown whether such studies provide information that goes
beyond behavioral measures with regard to reading itself. Perhaps
brain imaging studies, at the optimal limit, can only be as infor-
mative about behavior as behavioral measures themselves. By this
view, the imaging measures are redundant with behavioral mea-
sures, providing neurobiological correlates of behavior (i.e., pro-
viding a different level of description of the same phenomenon).
Further, some behavioral measures, such as age-standardized lan-
guage and reading tests, have been optimized for measurement
reliability and validity, and measurement reliability and validity
are seldom studied in brain imaging research. Finally, measures of
a particular kind typically correlate best with measures of the same
kind, so that behavioral measures of reading would be expected to
be most closely associated with the most important outcome of
reading education, that is, the behavior of reading. The preceding
points suggest that current brain imaging measures are unlikely to
provide insights into reading performance that go beyond behav-
ioral measures. Alternatively, it may be the case that even now,
neuroscience measures of brain structure and function contribute
novel, nonredundant information about reading ability.

The goal of this study was to examine directly whether current
brain imaging measures can provide novel information for predict-
ing future reading skills in healthy children. We considered pre-
diction to be an important goal because improved prediction of
reading skill can facilitate identification of children who may
benefit most from intensified or alternative reading instruction so
that reading failure is minimized. We focused on one reading skill
thought to be essential for effective reading, namely, word decod-
ing skill. Decoding refers to the ability to determine the sound of
a word from letters and syllables. Decoding ability is fundamental
to reading because learning to read involves learning to relate the
sounds of known auditory language (phonology) to letters (orthog-
raphy). Early and systematic emphasis on decoding leads to supe-
rior achievement of reading skills (Adams, 1990; Snow, Burns, &

Griffin, 1998). Therefore, improved methods for early identifica-
tion of young children at risk for impaired decoding abilities hold
promise for improving the specificity and effectiveness of early
intervention and later achievement of reading skills.

A relatively pure test of word decoding involves reading aloud
pronounceable nonsense words, because their proper pronuncia-
tion can only be derived from decoding skills (as opposed to words
memorized by sight). Such a test also measures phonemic aware-
ness, that is, awareness that words are composed of separable
sounds (i.e., phonemes) that are blended to produce words. Pho-
nemic awareness is one of the best predictors of reading success
(e.g., Juel, 1988). We therefore used decoding skill as an outcome
measure by measuring performance on a widely used test of
decoding: the Woodcock Reading Mastery Tests (WRMT) Word
Attack subtest. In this test, children attempt to read aloud pro-
nounceable nonwords of successive difficulty.

With advances in neuroimaging, it is possible to examine brain
activation and morphometric patterns that are associated with later
reading achievement and decoding skills. To date, however, there
are only minimal data pertaining to the use of brain measures to
predict later reading achievement. All studies in this area have
utilized event-related potentials (ERPs) to examine the develop-
ment of language and reading skills (Espy, Molfese, Molfese, &
Modglin, 2004; Molfese, Molfese, & Modgline, 2001). We used
data from functional magnetic resonance imaging (fMRI) and
structural imaging (VBM) and examined the relations of those
measures to future reading skills. One imaging study has suggested
that variation in brain morphology, as elucidated by VBM, can be
linked to phonetic learning of novel speech sounds in normal-
reading adults (Golestani, Paus, & Zatorre, 2002). Although not
focused on reading per se, these results are of interest as they
suggest that tissue-specific features of particular brain regions
(parietal gray and white matter) can, in part, predict the speed or
facility of normal, healthy adults in learning novel speech sounds.

In the present study, we investigated whether data obtained from
fMRI and VBM can predict later decoding skills and whether
fMRI and VBM data can be combined with behavioral data to
produce a successful multimodal predictor of future reading skills.
We studied 64 healthy children, identified by teachers as at risk for
reading difficulty, who were between 8 and 12 years of age and
varied in reading ability (see Method section for details on how the
children were recruited and characterized). These children were
identified as struggling readers by their teachers, but scores on
standardized tests ranged widely from poor to average to above
average.

We performed an fMRI study using a real-word rhyme judg-
ment task interrogating phoneme awareness at the beginning of the
school year (Time 1). At Time 1, optimized VBM analysis (C. D.
Good et al., 2001) was also performed with high-resolution ana-
tomical images. Further, a full battery of behavioral measures
before (Time 1) and after one school year (Time 2) were obtained.
We examined (a) how well decoding skills after one school year
were predicted by initial fMRI and VBM results; (b) whether the
combination of behavioral and neuroimaging results were more
predictive than behavioral or neuroimaging results alone using
multiple regression, and (c) the validity of the regression models.
The model validity check is critical because the residual (or
prediction) error of a multiple regression analysis may underesti-
mate the errors found in practice when there are outliers in the data
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or an excessive number of regressors in the model. We used
leave-one-out validation analysis to demonstrate prediction ability
and split-half reliability to demonstrate the stability of model
estimation (see Supplemental Data online).

Method
Recruitment

All participants were children attending public schools sur-
rounding Pittsburgh in Allegheny County, Pennsylvania and were
recruited from a larger behavioral study of children in the Pitts-
burgh area. Although most children were within the normal range
of reading, all students were initially identified as struggling read-
ers by their teachers. These children were participants in the
Power4Kids Reading Initiative, a randomized trial, field study of
remedial instruction for children with a wide range of reading
difficulties." Parents received explanatory materials about the
Power4Kids reading project in the mail, including the fMRI study,
and those expressing interest in the fMRI study were recruited. The
children gave verbal informed assent in the presence of a parent or
guardian, who gave signed informed consent. The children were
paid for their participation. A parent questionnaire was used to
verify that all participants met inclusion criteria (e.g. right-handed,
native English speakers, normal vision and hearing, no brain
injury, sensory disorders, psychiatric disorders, attention deficit
disorder, medication, claustrophobia, or metal in their bodies).
Following recruitment and screening, the children were scanned
and baseline measures were administered. All protocols were
approved by the University of Pittsburgh and Carnegie Mellon
University Institutional Review Boards, and informed assent and
consent was obtained for participation from each child and guard-
ian, respectively.

Participants

Children were healthy, right-handed, native English speakers
between the ages of 8.2 and 12.4 years old. Out of 95 children
tested at Time 1, 73 children returned for Time 2 behavioral
assessment and 64 (37 females, 27 males) had complete and usable
behavioral and neuroimaging measures. Many of the children
underwent one of four different types of reading intervention, but
there was no significant effect of intervention on their Time 1 or
Time 2 standard scores of decoding (Time 1: p = .92, Time 2: p =
A44).

Behavioral Evaluation

Reading ability was assessed witha standard battery of behav-
ioral measures. Behavioral evaluations of reading and reading-
related skills were obtained by Mathematica Policy Research
(Princeton, NJ). Tests at Time 1 included WRMT Word Attack
subtest; WRMT Word Identification subtest; WRMT Passage
Comprehension subtest; AIMSweb (a test measuring reading flu-
ency) Oral Reading Passage subtest; Clinical Evaluation of Lan-
guage Fundamentals 3 (CELF) Formulated Sentences subtest;
Comprehensive Test of Phonological Processing (CTOPP) Elision
subtest; CTOPP Blending Word subtest; CTOPP Rapid Digit
Naming subtest; CTOPP Rapid Letter Naming subtest; Group
Reading Assessment and Diagnostic Evaluation (GRADE) Pas-

sage Comprehension subtest; Peabody Picture Vocabulary Test
(PPVT); Rapid Autonomic Naming (RAN) Colors, Letters, Num-
bers, and Objects subtests; Test of Word Reading Efficiency
(TOWRE) Phonemic Decoding Efficiency subtest; TOWRE Sight
Word Efficiency subtest; the Woodcock Johnson (WJ) Spelling
subtest; and the WJ Calculation subtest. Tests at Time 2 included
WRMT Word Attack, Word Identification, and Passage Compre-
hension subtests, AIMSweb, GRADE Passage Comprehension
subtest, WJ Spelling subtest, and WJ Calculation subtest and
alternate forms. We compared differences between Time 1 and
Time 2 behavioral scores and age using paired ¢ tests.

JMRI Task Design

A real-word rthyme judgment task was used in the scanner with
two conditions: rhyme and rest. During the rhyme condition,
participants judged whether two visually presented words rhymed
(e.g., bait/gate, price/miss) and indicated each response with a
button press using their right hand for ‘rhyme’ and their left hand
for ‘non-rhyme’. Word pairs were selected so that the visual
appearance of the last letters of the two words could not be
regularly used to determine whether they rhymed. Stimuli were
balanced for frequency of occurrence, number of letters, and
syllables between the rhyme and nonrhyme trials and across blocks
(Zeno, Ivens, Millard, & Duvvuri, 1995; see Hoeft et al., 2006, for
the list of stimuli). Each trial lasted a total of 6 s, consisting of a
4-s period where the two words were presented simultaneously,
followed by a 2-s fixation cross. Each task block consisted of a 2-s
cue period followed by five trials (32 s total). During the rest
block, participants saw a 15-s fixation cross on the screen. The
entire scan was 234 s long, including two practice trials at the
beginning, and consisted of four rhyme blocks and five rest blocks.

Image Acquisition

The fMRI imaging and imaging-related procedures were per-
formed at the Brain Imaging Research Center (Carnegie Mellon
University and University of Pittsburgh). A 3.0 tesla (T) Allegra
scanner was used (Siemens Medical, Malvern, PA). A T2*-
weighted gradient echo, resonant echo planar pulse sequence sen-
sitive to blood oxygen level-dependent contrast was used with the
following acquisition parameters: TR (repetition time) = 1,000
ms, TE (time to echo) = 30 ms, flip-angle = 60°, field of view
(FOV) = 20 X 20 cm, matrix size = 64 X 64, axial-oblique plane
with 16 slices, and a voxel size of 3.12 X 3.12 X 6 mm with a
1-mm gap. In addition, a T1-weighted 3D-MPRAGE with the
following parameters was acquired: TR = 2,000, TE = 3.34, flip
angle = 7°, dimensions = 256 X 256 X 160, axial plane, voxel
size =1 X1 X 1 mm.

fMRI Data Analysis

Statistical analysis was performed with statistical parametric
mapping software (SPM99; Wellcome Department of Cognitive
Neurology, London, United Kingdom). After image reconstruc-
tion, each participant’s data was slice-time corrected (ascending,

! See www.haandkids.org/powerdkids/ for details on the Power4 Kids
Reading Initiative.
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reference slice 8) and realigned to the first functional volume.
Sessions were then normalized with the mean functional volume
resampled to 2 X 2 X 2 mm voxels in Montreal Neurological
Institute (MNI) stereotaxic space (12 nonlinear iterations, 7 X 8 X
7 nonlinear basis functions, medium regularization, sinc interpo-
lation). Spatial smoothing was done with a Gaussian filter (8-mm
full-width half maximum). Each participant’s data, which was
high-pass filtered at 96 s and globally scaled, was analyzed with a
fixed effects model incorporating their 6 motion parameters (X, y,
z, pitch, roll, yaw) as regressors. Motion was minimal in these
children (Table 1). There were no significant differences between
younger and older children: Grades 3 and 5, #62) = .05, p = .95;
for Grade 3, n = 26, M = 0.23; for Grade 5, n = 38, M = 0.24).
Further, there were no significant correlation with age (r = .14,
p = .28).

Group analysis was performed with a random effects model
with the rhyme versus rest contrast images (one per participant, per
contrast identified by fixed effect analysis). One-sample ¢ tests
were conducted to identify regions involved in phonological pro-
cessing (p = .01, false-discovery rate corrected; extent threshold
(et) = 10 voxels).

Further, we performed simple regression analysis using Time 2
WRMT Word Attack standard scores for age as a covariate of
interest. We identified regions that showed significant positive or
negative correlation with contrast values and Time 2 Word Attack
standard scores (which we defined as regions of interest, or
ROIgrps p = 001, et = 10) and extracted contrast estimates for
each participant for further analyses.

Voxel-Based Morphometry Data Analysis

Statistical analysis was performed with SPM2 (Wellcome De-
partment of Cognitive Neurology, London, United Kingdom).
After image reconstruction and coregistration with functional im-
ages, we used an optimized voxel-based statistical analysis (C. D.
Good et al., 2001) with tools modified by Christian Gaser (http://
dbm.neuro.uni-jena.de/vbm.html). Images were segmented into
gray matter, white matter, and cerebrospinal fluid and normalized
to a segmented template using the following parameters for non-
linear normalization: 25-mm cutoff, medium regularization, 16

iterations. Normalization parameters were applied to the initial
anatomic volume, and the normalized anatomic images were par-
titioned into gray matter and white matter. Spatial smoothing was
performed at full-width half maximum 12 mm. We performed
analyses using both the standard adult template as well as the
customized template including all participants and found similar
results in terms of location and statistical significance. We also
found similar results for modulated and nonmodulated VBM re-
sults. Here, we report the results using a customized template
without modulation.

We performed multiple regression analysis of gray matter and
white matter densities using Time 2 WRMT Word Attack
—standard scores as a covariate of interest and total gray matter or
white matter volume as a nuisance variable. We identified regions
that showed significant positive or negative correlation with gray
matter or white matter density and Time 2 WRMT Word Attack
standard scores (ROl gy, ROLy ., respectively, where GM = gray
matter and WM = white matter; p = .000001, family-wise error
corrected, et = 0) and extracted the average density values for each
ROI and for each participant for further analyses.

For both fMRI and VBM, statistical images were overlaid onto
the SPM or medical image viewing software MRIcro (http:/
www.sph.sc.edu/comd/rorden/mricro.html) template image for
three-dimensional viewing. Peak coordinates of brain regions with
significant effects were converted from MNI to Talairach space
with the mni2tal function (http://www.mrc-cbu.cam.ac.uk/
Imaging/Common/mnispace.shtml). Brain regions were identified
from these X, y, and z coordinates with Talairach Daemon (Re-
search Imaging Center, University of Texas Health Science Cen-
ter, San Antonio, TX) and confirmed with the Talairach atlas
(Talairach & Tournoux, 1988).

Definition of Prediction Models

We performed prediction analyses using a method similar to
other studies predicting outcome where there were a number of
predicting variables (Poulakis et al., 2004; Woodhouse et al.,
2003) (Figure la). All analyses were performed with Matlab
(MathWorks, Natick, MA). First, simple regression analyses were
performed between Time 2 WRMT Word Attack standard scores

Table 1
Demographics
Time 1 Time 2
Variable Raw scores Standard scores Raw scores Standard scores

Age (years) 10.00" (1.09) 10.557 (1.09)
WMRT

WA 19.50" (9.06) 93.73 (10.57) 25.28" (7.97) 98.01 (10.68)

D 53.59" (14.28) 90.48 (9.92) 61.06" (11.51) 92.88 (8.84)

PC 31.39" (7.88) 93.95 (11.6) 34.17" (6.06) 94.67 (8.88)
Rhyme (%) 78.4 (15.9) NA
fMRI motion (mm) 0.24 (0.13) NA

Note. Values presented are means (and standard deviations); WRMT = Woodcock Reading Mastery Test; WA
= Word Attack (pseudo-word reading); ID = Word Identification (real-word reading); PC = Passage Com-
prehension; Rhyme = in-scanner real-word rhyme judgment task performance; fMRI = functional magnetic

resonance imaging; NA = not applicable.

*p < .001, comparing Time 1 and Time 2 performance.
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Figure 1.

Flow charts and schematic diagrams of model creation and statistical comparisons of models. SI

indicates that the corresponding methods and results are provided in the Supplemental information online.

and each of the Time 1 behavioral measures. Behavioral variables
that correlated significantly (p < .05) were then subjected to a
multiple regression analysis with Time 2 Word Attack standard
scores.

It is possible that we missed some important predictors (sup-
pressor variables) that on their own do not correlate with outcome
but may reduce error variance by explaining additional variance.
However, we first performed simple regression analyses to select
variables that were entered into multiple regression analyses, in
order to match the methods used to derive neuroimaging predictors
and also to reduce the number of variables objectively.

In multiple regression analyses, y; are the Time 2 WRMT Word
Attack standard scores (i = 1, ..., N, where N = total number of
participants), and x,; (k = 1, ..., K, where K = total number of
behavioral variables) are the behavioral scores. The predicted
Time2 WA-ss Ys were then denoted with weights b,’s for each
participant i. Using the least square method (Minotani, 2004), we
determined b,, . .. b,, and constant term b, to minimize the sum
of squared deviations and provide the best fit of the multiple
regression model, the best correlation coefficient 2 of the model,
and the best contribution R* for each variable. The regression
residual is represented by €,.

> (Y- v

i=1

Yi= by + biXii+ baXo . +bX &

First, we performed multiple regression with all behavioral
variables defined in the simple regression analyses using the enter
procedure. Next, using the stepwise procedure (criteria: probabil-
ity-of-F-to-enter = .05, probability-of-F-to-remove = .1, which
are the default settings in Matlab), we obtained the behavioral
model. We also performed forward and backward procedures and
obtained similar results not only for the behavioral model but also
for the neuroimaging and combined models. In the multiple re-
gression model obtained from the stepwise procedure, behavioral
measures that contributed significantly according to the above
criteria were defined as behavioral predictors. Y; was defined as
the prediction index PI; for a given participant i.

Prediction indices were plotted against Time2 WRMT Word
Attack standard scores, and 7> and p values were computed. Linear
regression lines and two types of 95% prediction intervals (Mino-
tani, 2004) were drawn. Prediction intervals were calculated as
follows. The predicted value from the regression line f/, can be
defined as:

Y. = by + byx, + byx, + . ..
where b, b,, b,, and so forth are the results of the regression
model fit. The residue g, is therefore:
=Y — VY.

Assuming Gaussian data, the prediction interval with 95% confi-
dence of the mean Time 2 WRMT Word Attack standard scores
was calculated as:
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. >e2 1 (PI,—PI}
Yy * 1.96 X / — 4
0 \/N -2|N > (p1-PI?

i

for the ranges of the prediction indices where there are 95%
probabilities that the next experimental group line regression will
occur (95% prediction interval, group), and

> el 1 (PI—PI}?
+—+
N-=2|"'N > (pL-PI?

Y, + 1.96 X

for the ranges of the prediction indices where there are 95%
probabilities that the next experiment’s individual’s Time 2
WRMT Word Attack standard score value will occur (95% pre-
diction interval, individual; Minotani, 2004), where PI = predic-
tion index, IA/i = ay + a,PI, N = number of participants, Pl, = a
new given PI with which we predicted the confidence interval,
PIs = the original PIs (data itself), and PI = mean value of PIs.
We defined the neuroimaging and combined (behavioral and neu-
roimaging) models similarly and subsequently compared different
models.

For neuroimaging data, extracted contrast values from the fMRI
analysis (ROl ;), and gray matter and white matter density values
from VBM analyses (ROlg,, ROl ., respectively) were submit-
ted to similar multiple regression analyses used to identify behav-
ioral predictors and were defined as neuroimaging predictors.
Prediction indices were calculated similarly and correlation with
prediction indices and Time 2 WRMT Word Attack standard
scores were examined (Figure la). This was defined as the neu-
roimaging model.

Additionally, the 12 behavioral variables and 10 neuroimaging
predictors that showed correlation with Time 2 WRMT Word
Attack standard scores were combined and submitted to similar
analyses to identify combined predictors, which yielded eight
predictors. Prediction indices were calculated similarly, and cor-
relation with prediction indices and Time 2 Word Attack standard
scores were examined (Figure 1a). This was defined as the eight-
variable combined model

There was some variation between the number of days between
Time 1 and Time 2 testing sessions, but this interval did not
correlate with Time 2 WRMT Word Attack standard scores (r =
—.06, p = .66). Therefore, time between testing sessions was not
considered in further analyses.

Prediction Analyses Controlling for Initial Decoding
Skills, Age, or PPVT Standard Scores

We performed separate partial correlation analyses for each
model using Timel WRMT Word Attack —standard scores as
covariates of no interest to examine whether results reflected only
strong associations between Time 1 Word Attack —standard scores
and the behavioral or neuroimaging measures, rather than a unique
contribution of Time 2 Word Attack standard scores. We also
partialed out Time 1 age and PPVT standard scores to avoid bias
from these variables. We chose PPVT in place of an IQ measure
because 1Q was not obtained in this study; PPVT highly correlates
with full-scale 1Q (.90) in children on the Wechsler Intelligence

Scale for Children, Third Edition (WISC—III; Dunn & Dunn,
1997).

Leave-One-Out Cross-Validation Method

In the leave-one-out validation analysis, we tested whether
single participant Time 2 WRMT Word Attack standard scores
were predicted from the remaining 63 participants in the behav-
ioral, neuroimaging, or eight-variable combined models (Fig-
ure 1b). We first performed a multiple regression analysis with 63
participants, leaving out the single participant to be tested. The 63
participants were resampled 64 times, giving the best fitted b,’s for
each sample. The b,’s were then applied to the omitted participant,
yielding a prediction index. The 64 predicted values were plotted
against Time 2 WRMT Word Attack —standard scores. Mean
prediction indices of the 64 trained sets (i.e.,predicted value) were
correlated with WRMT Word Attack Time 2 standard scores, and
a linear regression line and 95% prediction intervals of individual
expected Time 2 Word Attack standard scores (see above Defini-
tion of Prediction Models for definition) were drawn for each
model. Absolute differences between the predicted values and the
actual Time 2 Word Attack standard score values of the omitted
participant were calculated. One-way repeated measures analysis
of variance (ANOVA) and post hoc comparisons were performed
between models.

Results
Demographic and Behavioral Measures

Demographic information is presented in Table 1. WRMT Word
Attack standard scores were the critical outcome measure, and
scores ranged from well above (138) to well below (66) the
expected mean of 100. Time 1 and Time 2 Word Attack standard
scores correlated highly (r = .68, p < .001).

Behavioral Model: Predicting Later Decoding Skills
Using Behavioral Measures

We first performed simple correlations between each test ad-
ministered at Time 1 and Time 2 WRMT Word Attack standard
scores (Figure la) and found measures most closely related to
phonological processing to correlate with Time 2 Word Attack
standard scores: standard scores on Time 1 WRMT Word Attack
(r = .74, p < .001), WRMT Word Identification (r = .64, p <
.001), TOWRE Phonemic Decoding Efficiency (r = .57, p <
.001), TOWRE Sight Word Efficiency (r = .46, p < .001),
CTOPP Blending Word (r = .35, p = .005), CTOPP Elision (r =
34, p = .006), AIMSweb (r = .50, p < .001), WRMT Passage
Comprehension (r = .50, p < .001), GRADE Passage Compre-
hension (r = .40, p = .001), Woodcock Johnson Calculation (r =
41, p = .001), Woodcock Johnson Spelling (r = .60, p < .001),
and the in-scanner rthyme judgment task (Rhyme; r = 48, p <
.001).

Among these 12 Time 1 behavioral measures that correlated
significantly with Time 2 WRMT Word Attack standard scores, 3
variables remained as significant predictors when multiple regres-
sion analysis was performed, multiple > = .65, F (3, 60) = 36.59,
p < .001. These 3 remaining variables were defined as behavioral
predictors, WRMT Word Attack, t = 5.70, p < .001; Woodcock



608 HOEFT ET AL.

Johnson Spelling, t = 3.05, p = .003; Woodcock Johnson Calcu-
lation, t+ = 2.53, p = .014, and combined into prediction indices
calculated by summing the constant and multiplying the 3 vari-
ables with their respective coefficients (see Supplemental Figure
Al online). Thus, this behavioral model was predictive of later
decoding skills.

Neuroimaging Model: Predicting Later Decoding Skills
Using Functional Magnetic Resonance Imaging and
Voxel-Based Morphometry Measures

We compared fMRI activation for real-word rhyme judgments
versus rest state (Figure 2, Table 2). We then performed whole-
brain regression analyses correlating Time 1 fMRI activation and
gray matter or white matter VBM densities with Time 2 WRMT
Word Attack standard scores and found 10 brain regions that
showed significant positive or negative correlations (ROlpg;S,
ROIgps8, and ROILy,,8, respectively; Figure 3 and Table 3). Mean
contrasts (effect size calculated as the linear combination of beta
parameters) or density information were extracted from these ROIs
for each participant. Consistency maps from permutation analyses
of fMRI and VBM multiple regression analyses showed consistent
activation and morphometric patterns for these ROIs (see Supple-
mental Figure B and text online). Using multiple regression, four
ROIs were found to contribute significantly, which were defined as
neuroimaging predictors: multiple > = .57, F(4,59) = 19.41,p <
.001; ROl right fusiform ~ middle occipital gyri (RFG/
MOG), t = 4.30, p < .001; ROIy,gx; left middle temporal gyrus
(LMTG): t = 3.21, p = .002, ROl g, right middle frontal gyrus
(RMFG): t = — 2.36, p = .021; ROI 5y, right posterior fusiform
gyrus (RFGp): + = 3.90, p < .001; Figure 3 and Table 3).
Prediction indices were calculated from these four predictors as
described above (Supplemental Figure A2 online). Thus, the neu-
roimaging model was also predictive of later decoding skills.

Combined Model: Predicting Later Decoding Skills
Combining Behavioral and Neuroimaging Measures

We repeated multiple regression and prediction analyses using
the 12 behavioral and 10 neuroimaging variables that showed
significant correlation with Time2 WRMT Word Attack standard
scores (Figure 1a). The goal was to achieve an index that would
best predict Time 2 Word Attack standard scores while minimizing
the total number of predictors. Using multiple regression, we
found that 8 variables contributed significantly, which were then
defined as combined predictors: multiple * = .81, F(8, 55) =
30.18, p < .001; standard scores on Word Attack, t = 4.16, p <
.001; Woodcock Johnson Calculation, t = 2.94, p = .005; Wood-

Figure 2.

Brain activation for rhyme judgment condition compared with-
resting baseline. Greater activation is evident in the rhyme judgment
condition. Scaling bar represents ¢ values.

cock Johnson Spelling, t = 2.79, p = .007; ROlg; RFG/MOG,
t = 3.95, p < .001; ROl RFGp, t = 2.74, p = .008; ROl
right anterior frontal gyrus (RFGa), t = 2.94, p = .005; ROl
left inferior parietal lobule (LIPL), r = 2.26, p = .028; ROl left
superior temporal lobe (LSTL), t = 2.14, p = .037; Figure 3 and
Table 3) Prediction indices were calculated as described above
(see Supplemental Figure A3 online). Thus, the combined model
was also predictive of Time 2 Word Attack standard scores.

When behavioral predictors were entered first, neuroimaging
predictors explained 23% more variance in addition to the variance
explained by behavioral predictors, F(4, 56) = 6.42, p < .001.
When neuroimaging predictors were entered first, behavioral pre-
dictors explained 15% of the variance in addition to the variance
explained by neuroimaging predictors, F(3, 56) = 14.78, p < .001.
Thus, the combined model was significantly better than the be-
havioral model or the neuroimaging model (see Supplemental
Figure A3 and text online).

Prediction Analyses Controlling for Initial Decoding
Skills, Age, or PPVT Scores

There is a possibility that the results reported thus far may
merely be a result of strong associations between Time 1 WRMT
Word Attack standard scores and the behavioral scores or predic-
tion indices, rather than a unique contribution of Time 2 Word
Attack standard scores. Therefore, we performed partial correla-
tion analyses for the three models, partialing out Time 1 Word
Attack standard scores, and found that the results remained sig-
nificant (behavioral 7 = .21, neuroimaging 7> = .40, combined r
2 = 59; all ps < .001; details are provided in the Supplemental
text online).

We also partialed out Time 1 age and PPVT standard scores.
The results remained significant: for age, behavioral r*= .63,
neuroimaging /= .56, and combined * = .81; for PPVT, behav-
ioral 7 = .63, neuroimaging > = .57, and combined »* = .81;
allp’s < .001). Hierarchical regression analyses of the three mod-
els entering Time 1 WRMT Word Attack standard scores, age, or
PPVT standard scores first and examining the remaining variance
showed similarly significant results.

Validation of Predictability of Models

The following tests use permutation approaches by effectively
reformulating the question on the differences between the predict-
ability of the models as measured by classifier performance in the
traditionally used framework of hypothesis testing (P. Good,
1994). The model validity check is critical because the residual (or
prediction) error of a multiple regression analysis may underesti-
mate the errors found in practice when there are outliers in the data
or an excessive numbers of regressors in the model. We used
leave-one-out cross-validation analysis to suppress possible effects
of outliers. We further performed bootstrap and split-half reliabil-
ity to demonstrate the stability and predictability of model estima-
tion (Supplemental Figure C and text online).

Using leave-one-out cross-validation analyses, we tested
whether single participant Time 2 WRMT Word Attack standard
scores (validation participant) can be predicted from the remaining
63 participants (training set) in the behavioral, neuroimaging, or
combined models, which allows for testing of generalization error
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Table 2
Brain Activation for Rhyme > Rest Contrast
Talairach coordinates
Region Brodmann area X y z t p (FDR) Voxels
Bilateral superior, inferior frontal gyri, insula, middle, inferior
occipital gyri, cuneus 6, 18,47, 13 4 9 55 14.46 <.001 37,815
Right precuneus, superior parietal lobule 7 24 —-52 45 6.17 <.001 297
Left middle, inferior frontal, precentral gyri 6,9, 4 —55 2 40 5.56 <.001 947
Left inferior, superior parietal lobules, angular gyrus, precuneus 7, 39 —30 —56 47 4.25 <.001 180
Left middle frontal gyrus 46, 9 —40 36 20 3.98 .001 233
Right inferior parietal lobule 40 44 —41 44 3.97 .001 68
Left superior temporal gyrus 22 —53 —23 3 3.93 .001 73
Left transverse, superior temporal gyri 41 —42 —-32 11 3.57 .002 35
Left superior, middle frontal gyrus 10 —32 49 14 3.09 .006 18

Note. FDR = false-discovery rate.

(Figure 1b and Method section). All models showed significant
correlation between prediction indices and Time 2 Word Attack
standard scores (p’s < .001), indicating the validity of the models
(see Supplemental Figure D1-3 online). For each of these 64

Figure 3. Neuroimaging rredictors of future decoding skill. (a) Regions
showing a relation between fMRI (functional magnetic resonance imaging)
brain activation (rhyme > rest) and Time 2 Woodcock Reading Master
Test Word Attack standard scores. (b) Regions showing a relation between
gray matter (GM) density and and Time 2 Word Attack standard scores. (c)
Regions showing a relation between white matter (WM) density and Time
2 Word Attack standard scores. The numeral 1 (in green) indicates pre-
dictors included in the neuroimaging model, and the numeral 2 (in red)
indicates predictors included in the combined model (note: these models
were derived independently; hence, the slight differences in predictors that
were included in the models). Scaling bars indicate Tesla values. VBM =
voxel-based morphometry.

predicted values, we measured the deviation from the actual Time
2 Word Attack standard scores to measure how accurately the
validation participant’s Time 2 Word Attack standard scores could
be predicted. The deviation was on average 5.33 (SD = 4.24)
Word Attack standard score points for the behavioral model, 5.81
(SD = 4.81) points for the neuroimaging model, and 4.17 (SD =
0.52) points for the combined model (see Supplemental Figure D4
online). There was a significant effect of models, F(1, 63) = 5.33,
p = .024, which was driven by the significantly greater accuracy
of predicting the validation participant’s Time 2 Word Attack
standard scores (i.e., less deviation) of the combined model com-
pared with the behavioral, #(63) = 2.31, p = .024, and the
neuroimaging models, #63) = 3.02, p = .004. There was no
significant difference between the neuroimaging and behavioral
models, #63) = 0.78, p = .44.

One might expect that the combined model performs better
simply as a result of the increased number of predictors in the
model. Hence, we repeated the analyses including the same num-
ber of predictors (eight or three) for each model (see Supplemental
text online). Eight variables per model were chosen as the number
of variables to match with the combined model, which had the
most number of variables. To avoid bias toward the combined
model, we also tested with three variables per model, which were
chosen as the number of variables to match with the behavioral
model,which contains the least number of variables and which
biases toward the behavioral model. With the number of predictors
held constant, the combined model performed better than the
behavioral or the neuroimaging model with either eight or three
variables (see Supplemental Figure E and text online).

Discussion

We examined how well behavioral and brain measures taken at
the beginning of the school year predicted a critical ability for
reading, that is decoding skills, at the end of the school year for
children 8—12 years of age. Standardized behavioral measures of
reading and language yielded a behavioral model that accounted
for 65% of the variance in end-of-the-year performance on the
WRMT Word Attack subtest, a standardized test of decoding.
Brain imaging measures, comprised of both functional (fMRI) and
gray and white matter morphological (VBM) scores, yielded a
neuroimaging model that accounted for 57% of later variance in
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Table 3

Whole-Brain Correlations With Time 2 Woodcock Reading Mastery Test Word Attack Standard Scores

Talairach coordinates

Region Brodmann area X y Z t Pt Voxels
fMRI
Positive correlation with Time 2 WRMT WA ss
Right fusiform gyrus; middle occipital gyri®* 18,19 28 =75 6 4.61 <.001 133
Right fusiform gyrus 24 —49 -9 3.49 <.001 12
Left middle temporal gyrus® =51 —47 2 3.47 <.001 12
Negative correlation with Time 2 WRMT WA ss
Right middle frontal gyrus® 42 8 46 3.83 <.001 52
Voxel-based morphometry
Gray matter: Positive correlation with Time 2 WRMT WA ss 30 —72 -6 9.82 <.001 508
Right fusiform gyrus; posterior®® 30 —64 -8 9.03 <.001
Right fusiform gyrus, anterior® 42 —30 —13 9.07 <.001 18
White matter: Positive correlation with Time 2 WRMT WA ss
Right frontal lobe 29 34 13 8.96 <.001 33
Left medial frontal lobe -19 32 19 8.94 <.001 48
Left superior temporal lobe® —-32 —19 -3 8.94 <.001 45
Left inferior parietal lobule® =31 =51 31 8.93 <.001 24

Note. 'WRMT WA ss = Woodcock Reading Mastery Test Word Attack standard scores; fMRI = functional magnetic resonance imaging.

“For fMRI, p values are uncorrected; for VBM, p values are corrected for family-wise error.

predictors. © Brain regions that remained as combined predictors.

decoding ability (which was nonsignificantly less than the behav-
ioral model). Most importantly, the combined model of behavioral
and neuroimaging measures was most predictive of later decoding
skills, and explained 81% of the variance. The combined model
was significantly better than either the behavioral or the neuroim-
aging model, as indicated by direct comparisons with multivariate
analyses and validation tests. Thus, neuroimaging provided a
unique kind of predictive information that was not merely redun-
dant with behavioral measures. The combination of behavioral and
neuroimaging most accurately predicted how much a year of
education would influence a fundamental reading skill.

Subsidiary analyses supported the reliability and validity of all
three models. The leave-one-out cross-validation, bootstrap, and
split-half reliability analyses indicated that the findings were not
due to either outlier values or too many regressors in the models,
and that the models were stable. The findings held when the
number of regressors was equated across the models or when
initial WRMT Word Attack standard scores were used as a co-
variate (although this reduced the explained variance of all mod-
els). Thus, the behavioral and neuroimaging measures were similar
in their validity and robustness as predictors.

In agreement with previous studies that have repeatedly shown
phonological awareness to be one of the best predictors of reading
success (e.g., Juel, 1988), many behavioral tests that showed
significant correlation with Time 2 WRMT Word Attack standard
scores were related to decoding and phoneme awareness. Time 1
Word Attack scores, which should be most predictive of Time 2
Word Attack scores, that is, the outcome measure in our study,
accounted for 49% of the variance on their own. Further,
grapheme—phoneme knowledge (spelling, Time 1 Woodcock
Johnson Spelling standard scores) was another strong predictor.
One rather surprising predictor, however, was the children’s ability
to calculate (Time 1 Woodcock Johnson Calculation standard
scores). This is, however, in agreement with what has been found

" Brain regions that remained as neuroimaging

previously (Nairoo, 1972). The prediction of later decoding skills
from the ability to calculate may also be related to a higher
prevalence of dyscalculia (a condition with a specific disturbance
of arithmetic ability) in dyslexia (a developmental disorder char-
acterized by difficulties with accurate and/or fluent word recogni-
tion and by poor spelling and decoding abilities that is often
unexpected in relation to other cognitive abilities and the provision
of effective classroom instruction (Lyon, Shaywitz, & Shaywitz,
2003) ranging from 17 to 64% (e.g., Badian, 1999; Gross-Tsur,
Manor, & Shalev, 1996). These studies suggest that there may be
a relationship between calculation and reading skills. In addition,
neuroimaging studies have shown relationships between language
or phonological processing and calculation in language-related
brain regions, including the left parietal region (Dehaene, Spelke,
Pinel, Stanescu, & Tsivkin, 1999; Simon, Mangin, Cohen, Le
Bihan, & Dehaene, 2002). However, children with reading diffi-
culties and children with comorbid reading and mathematics dif-
ficulties progress at about the same rate in reading achievement
(Jordan, Kaplan, & Hanich, 2002). The exact role of calculation
abilities in predicting later decoding skills needs further investi-
gation. Other reading measures tested in these children did not
remain as predictors in the behavioral model, which may partly be
due to collinearity effects of Time 1 Word Attack standard scores
and other reading tests.

Some have questioned the utility of behavioral tests for accu-
rately predicting risk for poor decoding skills (Hammill, Mather,
Allen, & Roberts, 2002). In a behavioral study examining 200
children between 1st and 6th grades with multiple regression
analyses, phonology composites accounted for 40% of the variance
in younger children and 42% of the variance when all children
were combined in predicting word identification skills. The au-
thors of that study concluded, however, that none of the compos-
ites studied met criteria that are considered to be practically useful.
More recent multivariate studies, however, show better predictive
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values (e.g., Bowey, 2005), in which the results are more consis-
tent with our results.

Neuroimaging predictors of later superior decoding skills in-
cluded greater brain activation in the right fusiform ~ middle
occipital and left middle temporal gyri, lesser activation in the
right middle frontal gyrus, greater gray matter density in right
fusiform gyrus, and greater white matter density in the left superior
temporal and inferior parietal regions. Findings that greater left
temporal-lobe activation and white matter are associated with
superior decoding skill are consistent with prior studies in normal
and dyslexic readers (e.g., structural studies: Deutsch et al., 2005;
Klingberg et al., 2000; Silani et al., 2005; functional studies:
Turkeltaub, Gareau, Flowers, Zeffiro, & Eden, 2003). The relation
between lesser right frontal activation and later superior decoding
skill may be related to findings indicating that the development of
reading ability involves a reduction of right-hemisphere activation
and a growth of left-hemisphere activation. Less expected were the
relations of greater right fusiform activation and gray matter den-
sity with later superior decoding. Some studies have reported
reduced VBM gray matter (W. E. Brown et al., 2001; Eckert et al.,
2005) and activation (Aylward et al., 2003) in the right occipito-
temporal region in dyslexia, which may imply that greater activa-
tion leads to better reading outcome. Other studies, however, have
reported a developmental decrease in right fusiform activation
associated with increasing age or gains in reading and language
tasks in a cross-sectional study of healthy children and adults
(T. T. Brown et al., 2005; Turkeltaub et al., 2003); these studies
may indicate that less activation (more like that of adults) leads to
better outcome and, hence, may be inconsistent with our results.

It is difficult to directly relate our findings, which are derived
from a sample of children with a broad range of reading ability, to
prior imaging studies mentioned above that examined severely
dyslexic, highly skilled typically reading participants, or both.
Speculatively, it may also be that the development of reading
ability in the age range of our study depends transiently on mech-
anisms supported by the right fusiform gyrus before becoming
dependent on left-hemisphere mechanisms in the adult reader. This
possibility is supported not only by findings of right fusiform
activation in children performing reading tasks (Aylward et al.,
2003; T. T. Brown et al., 2005; Turkeltaub et al., 2003) but also by
evidence that effective remediation for dyslexia involves not only
increased activation in left-hemisphere language areas but also
increased activation in many right-hemisphere areas (Aylward et
al., 2003; B. A. Shaywitz et al., 2004; Temple et al., 2003).

The combined model predicted later decoding skills signifi-
cantly better than either the behavioral or neuroimaging models,
but our study has several limitations. First, the sample is not
epidemiologically representative and, therefore, generalizability of
the findings is unknown. Second, participants were followed for
only for one school year, and evaluation of longer term predictive
models will be important. Third, we focused on one measure of
word decoding, a pseudoword reading task that measures phono-
logical processing as the outcome measure. We chose this measure
because decoding accounts for most of the variance in reading
comprehension, the development of language specific phonology
is essential for reading success, and early and systematic emphasis
on decoding leads to better achievement of reading skills (Adams,
1990; Hulme & Snowling, 2005; E. Richardson, DiBenedetto, &
Adler, 1982; Shankweiler et al., 1999; Snow et al., 1998; Snowl-

ing, 1987). There may, however, be better measures or combina-
tions of measures that will be more suitable as an outcome measure
(Leonard, Eckert, Given, Virginia, & Eden, 2006), because reading
comprehensions and reading fluency involve many processes be-
yond single-word decoding. In addition, one might argue that gains
in reading ability may be a more appropriate outcome measure
than Time 2 scores. In our preliminary analyses (results not
shown), activation of brain regions that predicted gains in WRMT
Word Attack scores were, however, similar to those of this study.

Fourth, behavioral and neuroimaging predictors used here were
selected from univariate and multivariate analyses with the total
sample and were applied to the validation tests, that is, for each
permutation, ROIs were not re-identified, and the same contrast
estimates and gray and white matter volume were used throughout.
In addition, there may be important predictors that may not show
significant correlation in a univariate analysis but may contribute
significantly when included in multivariate analyses. Fifth, we
deliberately chose a purely empirical approach so that we could
optimize both behavioral and brain predictions of Time 2 scores.
Such a purely empirical approach may highlight brain regions that
are not yet well understood in reading, and that may merit a
hypothesis-based approach in the future, but reduces our ability to
interpret why certain brain measures predicted future decoding
skill. Future studies with a predefined set of brain regions (a more
theoretical approach) or utilizing multi-voxel pattern analysis
(MVPA) will be of interest (Norman, Polyn, Detre, & Haxby,
2006). Sixth, the models created examined linear relationships, and
an increasing number of studies show nonlinear effects of devel-
opment (e.g., Shaw et al., 2006). Whether this approach has true
clinical utility is unknown. Although the leave-one-out cross-
validation analyses showed significantly greater prediction for the
combined as compared with the behavioral model, the gain was
only 1.17 Word Attack standard score points on average (4.16 vs.
5.33). It is thought that the sensitivity index, specificity index, and
positive predictive value should all reach at least 75% in order for
a measure to be considered acceptable for practical use and suit-
able for screening purposes (Gredler, 2000). In our sample, and
using the behavioral, neuroimaging, and the combined models, we
found that high sensitivity, specificity, and positive predictive
value greater than 75% were achieved in classifying children with
reading disability at Time 2 (data not shown); reading disability
was defined by Time 2 Word Attack standard scores of 85 or
below, which is a common threshold. Ultimately, identification of
a predefined set of predictors independent of the sample in a
prospective study followed up for a longer period of time that
passes the above threshold (a minimum of 75%) will be necessary.

More generally, our findings relate to one potential practical use
of neuroimaging, namely, the prediction of future health or behav-
ior. Neuroimaging has been used to predict the outcome of treat-
ment for depression (e.g., Canli et al., 2005; Siegle, Carter, &
Thase, 2006) and the conversion from healthy aging to Alzhei-
mer’s disease (e.g., Apostolova et al., 2006; Bookheimer et al.,
2000; de Leon et al., 2001). These studies have often used smaller
samples and a single imaging modality, and only one study has
examined the validity of a model with a permutation test (Apos-
tolova et al.,, 2006). Another study, however, examined pre-
operative behavior, brain volume, and fMRI in 10 temporal-lobe
epilepsy patients to predict post-operative memory and compared
sensitivity, specificity, and positive predictive value in a small
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sample of 10 participants (M. P. Richardson et al., 2004). They
found that left-right hippocampal encoding activity difference
showed reasonable sensitivity, specificity, and positive predictive
value (20-100 %) for predicting the amount of pre- to post-
operative memory decline. Over time, perhaps in combination with
an individual’s genetic information, neuroimaging may contribute
to increasingly accurate predictions of future behaviors. In the case
of reading difficulties, identification of children at risk as early as
possible seems desirable so that interventions may be implemented
prior to reading failure and perhaps prior to the development of
disadvantageous reading habits that may slow the effectiveness of
interventions. Judicious use of predictive measures would require
consideration of predictive accuracy at the individual level, such as
sensitivity, specificity, and cost—benefit balances. Ethical consid-
erations will also be important to avoid abuses of neuropredictive
measures (although these ethical considerations are not fundamen-
tally different from those of other kinds of predictive measures;
Illes & Raffin, 2005). In this vein, it will also be important to
recognize that brain dysfunction in dyslexia can be altered by
remediation (e.g., Temple et al., 2003), indicating that effective
education can guide beneficial plasticity.

Taken together, these findings indicate that neuroimaging mea-
sures predict decoding skill after a year of school almost as well as
do current standardized tests and that behavioral tests and neuro-
imaging measures in combination predict decoding skill signifi-
cantly better than either kind of measure alone. The significantly
greater predictive accuracy of the combined behavioral-
neuroimaging model than either model alone shows that neuroim-
aging is measuring brain functions and structures relevant to
reading that are not fully measured by their behavioral correlates in
standardized testing. There are still many steps to be taken to show
that neuroimaging measures have sufficient value before such
measures ought to be considered for practical prediction of the
need for educational intervention. Combined behavioral and neu-
roimaging measures, however, hold promise for improving the
specificity and effectiveness of early intervention and later
achievement of reading skills. The present findings, therefore,
suggest a point where a useful bridge can be built between cog-
nitive neuroscience and education.
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