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Abstract: Human neuroimaging studies have increasingly converged on the possibility that the neural
representation of specific numbers may be decodable from brain activity, particularly in parietal cortex.
Multivariate machine learning techniques have recently demonstrated that the neural representation
of individual concrete nouns can be decoded from fMRI patterns, and that some patterns are general
over people. Here we use these techniques to investigate whether the neural codes for quantities
of objects can be accurately decoded. The pictorial mode (nonsymbolic) depicted a set of objects
pictorially (e.g., a picture of three tomatoes), whereas the digit-object mode depicted quantities as
combination of a digit (e.g., 3) with a picture of a single object. The study demonstrated that
quantities of objects were decodable from neural activation patterns, in parietal regions. These
brain activation patterns corresponding to a given quantity were common across objects and
across participants in the pictorial mode. Other important findings included better identification of
individual numbers in the pictorial mode, partial commonality of neural patterns across the two
modes, and hemispheric asymmetry with pictorially-depicted numbers represented bilaterally and
numbers in the digit-object mode represented primarily in the left parietal regions. The findings
demonstrate the ability to identify individual quantities of objects based on neural patterns, indicating
the presence of stable neural representations of numbers. Additionally, they indicate a predominance
of neural representation of pictorially depicted numbers over the digit-object mode. Hum Brain Mapp
34:2624–2634, 2013. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION

How numbers are mentally represented has been an
enduring question in psychology because of its educa-

tional and cross-cultural significance, and many different
approaches have attempted to address this issue. After
decades of interesting behavioral studies [Barth et al.,
2003; Dehaene and Akhavein, 1995; Moyer and Landauer,
1967; Naccache and Dehaene, 2001b] of number represen-
tation, neuroscience methods are increasingly being used
to provide information about the neural representation of
numbers. Neuroimaging studies [Cohen Kadosh and
Walsh, 2009; Dehaene, 1996; Eger et al., 2003; Libertus
et al., 2007; Nacache and Dehaene, 2001a; Pinel et al., 2001]
have increasingly converged on the possibility that the
neural representation of numbers may be decoded from
brain activity, particularly in parietal cortex. In other
semantic domains, recent applications of multivariate anal-
ysis methods to fMRI data have succeeded in decoding
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the stimulus features represented in primary or midlevel
sensory cortices [Formisano et al., 2008; Haynes et al.,
2005; Kamitani et al., 2006], the cognitive states associated
with object categories, such as houses [Cox and Savoy,
2003; Hanson et al., 2004; Haxby et al., 2001; Haynes and
Rees, 2006; O’Toole et al., 2007], tools and dwellings [Shin-
kereva et al., 2008], goal intentions in a navigation task
[Rodriguez, 2010], children’s mental states while solving
algebra equations [Anderson et al., in press] and detecting
individual memories [Rissman et al., 2010]. More recently,
it has been demonstrated that the neural representation of
individual concrete nouns can be decoded from fMRI pat-
terns [Just et al., 2010; Mitchell et al., 2008], and that these
patterns are common across people. Additionally, it has
also been shown that individual numbers presented as ei-
ther dots or digits can be decoded from brain activity
[Eger et al., 2009]. However, there exists little connection
between the two. This study examines whether the neural
codes for quantities of objects can be decoded from fMRI
neural patterns, and if so, whether these patterns underly-
ing quantities are common across objects and participants.

Numbers can be expressed in different notational forms
(e.g., the digit 3, the number word three in spoken or writ-
ten form, or a nonsymbolic set of three dots). Whether there
is a common neural substrate underlying an abstraction of a
given number across these notations is a topic of consider-
able debate [Cohen Kadosh, 2009; Dehaene et al., 1998].
Some neuroimaging studies have indicated bilateral parietal
regions to be associated with an abstract or notation-inde-
pendent representation of numbers [Dehaene et al., 1998;
Fias et al., 2003; Libertus et al., 2007; Nacache and Dehaene,
2001a], while others have shown parietal hemispheric asym-
metry in the representation of numbers depicted in different
notations [Ansari, 2007; Cohen Kadosh et al., 2007; Note-
baert et al., 2011; Piazza et al., 2007]. So far, there is no con-
clusive evidence concerning a common neural
representation of numbers across different input forms.

The primary goal of this study was to investigate whether
it is possible to decode from neural patterns the cardinality
of the set of semantic objects (i.e., how multiple quantities of
objects are represented in the brain in contrast to single
objects [Just et al., 2010; Mitchell et al., 2008] displayed in
novel ways [nonsymbolically or pictorially, as a picture of
three tomatoes or as a combination of a symbolic digit (say,
3) and a picture of an object (e.g., a tomato)]. Other goals of
the study were to investigate whether these number-evoked
neural patterns were common across objects and across par-
ticipants and finally, whether the neural representation
underlying a given quantity of an object is common across
different input modes.

MATERIALS AND METHODS

Participants

Ten right-handed adults from the Carnegie Mellon com-
munity (three males), mean age 25.5 years (SD, 2.27; range,

21–30 years), participated and gave written informed
consent approved by the University of Pittsburgh and
Carnegie Mellon University’s Institutional Review Boards.
All participants were financially compensated for the prac-
tice and fMRI data collection sessions.

Experimental Paradigm

Quantities of objects were presented in two visual
modes. The pictorial (nonsymbolic mode) depicted a given
quantity of objects pictorially (e.g., a picture of three toma-
toes), whereas the digit-object mode depicted a combina-
tion of a digit (e.g., 3) with a picture of an object. Three
quantities 1, 3, and 5 and four objects dots, hammer,
tomato, and car were used in the stimuli for each presen-
tation mode and, therefore, there were a total of 24 quanti-
ties of objects across the two presentation modes. The
objects (except dots) were chosen based on their relevance
to three semantic factors (manipulation, shelter, and eat-
ing) from Just et al. [2010] study. To unconfound number
from associated lower-level stimulus parameters like spa-
tial position differences between quantities in the pictorial
mode, each of the three quantities 1, 3, and 5 were pre-
sented in four different spatial configurations (different
spatial locations for the quantity 1), i.e., each quantity had
four different spatial arrangements as there were four
objects. Figure 1 provides an example of two out of four
different ways of presenting the quantity 5, i.e. 5 cars vs. 5
hammers’’. The two presentation modes (pictorial and
digit-object) were presented in separate runs or blocks
with each block containing 12 quantities of objects (1, 3,
and 5 of dots, hammers, cars and tomatoes). Each block of
these 12 quantities of objects (for both the pictorial and
digit-object presentation modes) was presented six times
(using six different random permutation orders of the 12
items within each block).

Participants were given the same instructions for the
two modes. To ensure that each participant had a consist-
ent set of properties to think about, he or she was asked to
generate a set of properties for quantities of objects prior
to the scanning session [Shinkareva, 2008]. However, noth-
ing was done to elicit consistency across participants. Spe-
cifically, they were instructed as follows:

‘‘In this task you will see small quantities (1, 3, or 5)
of objects (tomatoes, hammers, cars, or dots) on the
screen. The study investigates how consistently you can
think about a given quantity of various types of objects.
You will be shown each display several times, and we
would like you to think about the same properties of a
given quantity of objects each time you see it. The image
will be on the screen for 3 seconds, and you can think of
properties such as: What does this quantity of objects
look like? How do you interact with the object in this
quantity? For what purpose is this quantity of this object
used?

For example, if you see a picture of five tomatoes, then
you may think about properties like these:
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• Appearance: Five tomatoes in a plastic box in the gro-
cery store

• Interaction: Carrying them
• Purpose: Making a salad

In some of the displays, rather than seeing a picture of 5
tomatoes, you will simply see the digit 5 and a picture of
a tomato, and again you should think of a set of properties
for that quantity of the object’’.

Each stimulus was presented for 3 s, followed by a 4 s
rest period, during which the participants were instructed
to fixate on an X displayed in the center of the screen.
There were six additional fixation/rest periods, 31 s each,
distributed across the session, to provide a baseline mea-
sure of activation. A schematic diagram of the paradigm is
shown in Figure 1. Although, the timing of the stimulus
presentations used in the study makes it similar to a fast
event related design, the treatment of the hemodynamic
response was different from those of conventional event
related designs. Specifically, only 4 s of data were used
from each item. These 4 s consisted of the four images start-

ing at 4 s after stimulus onset and ending 4 s later (at a TR
of 1), capturing the peak of the activation response in this
paradigm. This experimental paradigm and the 4-s interval
were chosen based on previous neurosemantic fMRI studies
[e.g., Just et al., 2010; Mitchell et al., 2008; Shinkareva et al.,
in press] that attempted to optimize classification accuracy.
Since the stimuli were presented in a different random
order in each block, there should be no systematic sequen-
tial dependencies that the classifier can learn from HRF
overlap between consecutive stimuli. Thus, the results
should be unbiased and, at worst, they may underestimate
the accuracy with which the neural representations can be
classified. It is always possible that longer intervals between
successive stimuli would have reduced overlap between the
activation responses to successive stimuli and thereby
increasing the classification accuracies.

fMRI Procedure

Functional images were acquired on a Siemens Allegra
3.0T scanner (Siemens, Erlangen, Germany) at the Brain
Imaging Research Center of Carnegie Mellon University
and the University of Pittsburgh, using a gradient echo
EPI pulse sequence with TR ¼ 1,000 ms, TE ¼ 30 ms, and
a 60� flip angle. Seventeen 5-mm thick oblique-axial slices
were imaged with a gap of 1 mm between slices. The ac-
quisition matrix was 64 � 64 with 3.125 � 3.125 � 6 mm3

voxels.

fMRI Data Processing for Machine Learning

Initial data processing was performed with Statistical
Parametric Mapping software (SPM2, Wellcome Depart-
ment of Imaging Neuroscience, London, UK). The data
were corrected for slice timing, motion, and linear trend,
and were temporally smoothed with a high-pass filter using
a 190 s cutoff. The data were normalized to the Montreal
Neurological Institute (MNI) template brain image using a
12-parameter affine transformation without changing voxel
size. The images brain volume was parcellated into regional
definitions derived from the Anatomical Automatic Label-
ing (AAL) system [Tzourio-Mazoyer et al., 2002].

The initial machine learning classifications were
attempted using voxels from only one cortical region at a
time, as well as from all of the regions combined. These
initial analyses showed that although the highest classifica-
tion accuracies were obtained using voxels from anywhere
in the brain, the accuracies were only a few percentage
points lower when voxels from only parietal regions were
used. Because parietal regions have previously been cen-
trally implicated in several neuroimaging studies associ-
ated with number representation [Cohen Kadosh et al.,
2007; Cohen Kadosh and Walsh, 2009; Dehaene, 2003; Eger
et al., 2003; 2009 Libertus et al., 2007; Nacache and
Dehaene, 2001a; Pinel et al., 2001], the main analyses
reported below focus on only the parietal lobe.

Figure 1.

A schematic diagram of the experimental paradigm. A: Pictorial

mode of presentation. B: Digit-picture mode of presentation.
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The percent signal change (PSC) relative to the fixation
condition was computed at each voxel for each item pre-
sentation. To get mean PSC for individual items or trials,
the mean of four images or four acquisitions acquired
once per sec within the 4s window from 4s to 7s after
stimulus onset was computed and it was divided by the
mean fixation image and converted into PSC. For each
item or trial, the mean PSC of these four images (relative
to mean fixation image) acquired within a 4 s window
provided the main input measure for the classifiers’ train-
ing and testing. Since, each trial or item presentation was
3 s long, the window for the preceding trial was captured
during the rest period (or empty inter stimulus interval)
that followed it. These methods are similar to other
machine learning fMRI studies [Just et al., 2010; Mitchell
et al., 2008; Shinkareva et al., in press]. The mean PSC
data for each item presentation were further normalized to
have mean zero and variance one, to equalize the
between-participants variation in exemplars.

Machine Learning Methods

Classifiers were trained to identify cognitive states asso-
ciated with thinking about the quantities of objects pre-
sented in the two modes using the evoked pattern of
functional activity (mean PSC). Classifiers were functions f
of the form: f: mean_PSC ! Yj, j¼{1, : : : ,m}, where Yj was
either three quantities (1, 3, or 5) or two modes (pictorial
or digit-object), where m was either 3 or 2 accordingly,
and where mean_PSC was a vector of mean PSC voxel
activations, as described above. To evaluate classification
performance, trials were divided into training and test
sets. To reduce the dimensionality of the data, relevant
features (voxels) were extracted from the training set prior
to classification (see Feature Selection, below). A classifier
was built from the training set using the selected features
and was evaluated on the left-out test set, to ensure
unbiased estimation of the classification error.

Classification

A Gaussian Naı̈ve Bayes (GNB) pooled variance classi-
fier was used [Mitchell, 1997]. It is a generative classifier
that models the joint distribution of a class Y (e.g., quanti-
ties or modes) and attributes (voxels), and assumes the
attributes X1, : : : ,Xn are conditionally independent given Y.
The classification rule is:

Y arg max
yj

PðY� yjÞP
n

i
PðXijY ¼ yjÞ; j ¼ 1; 2; :::;m

In this experiment, all classes were equally frequent. Rank
accuracy was used to evaluate 3-class or 2-class classifica-
tion. Classification results were evaluated using k-fold
cross-validation described below. To evaluate the signifi-
cance of obtained rank accuracies, we performed random
permutation tests (10,000 permutations) for each type of
classification and reported accuracies with P < 0.05.

Feature Selection

Features (voxels) were selected from the training set
(training presentations), selecting the 120 parietal voxels
whose vector of response intensities to the set of stimu-
lus items were the most stable over the set of four train-
ing presentations. A voxel’s stability was computed as
the average pairwise correlation between pairs of the
four vectors of response intensities in a training set for
within-participant analysis. Our previous studies indi-
cated that 120 voxels typically are sufficient to obtain
accurate classification of semantic representations [Just
et al., 2010].

To visualize the degree of commonality of the locations
of stable voxels across participants, averaged stability
maps were computed by first creating masks for the stable
voxels that were common in at least two cross-validation
folds with a cluster size of five contiguous voxels in each
participant. Then these masks were averaged across partic-
ipants showing only those voxels that were common in at
least two participants with a minimum cluster size of 12
contiguous voxels Such maps were created for the two
modes of presentation separately.

Cross Validation

Cross-validation procedures were used to obtain mean
rank accuracies of the classification within each partici-
pant. In each fold of the cross-validation, the classifier
was trained on the labeled data from four of the six pre-
sentations or blocks and then tested on the mean data of
the remaining two left-out blocks. This N-2 cross-valida-
tion procedure resulted in 15 possible cross-validation
folds, and the main data consist of the mean rank accu-
racy of the classification averaged across the 15 folds.
Thus training and test sets were independent [Mitchell
et al., 2004].

Multiple Participant Analysis

Data from all but one participant were used to train a
classifier to identify the data in the left-out participant.
The mean of six presentations of each item was com-
puted for each participant separately. Feature selection
identified the voxels within the mask of the parietal
region whose responses were the most stable over the set
of nine participants in the training set. The 120 most sta-
ble voxels were selected, where a voxel’s stability was
computed as an average pairwise correlation between its
12- quantities (1, 3, and 5 within dots, hammer, tomato,
and car) activation profiles across nine participants in the
training set. The same 120 voxels obtained from the
training set were used to test the left-out participant.
This process was repeated so that it reiteratively left out
each of the participants.
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RESULTS

Overview

The findings demonstrated the ability to accurately
decode individual numbers from neural activation patterns
in both the pictorial and the digit-object modes, with much
higher classification accuracy obtained in the pictorial
mode. Additionally, a classifier trained on activation pat-
terns evoked by quantities in one mode could to some
degree classify quantity representations in the other mode.
Third, in the pictorial mode, a classifier trained on the neu-
ral patterns evoked by a quantity of an object (say, three
tomatoes) could accurately classify quantity representations
evoked by other objects (such as three hammers). Fourth, in
the pictorial mode, it was possible to accurately classify
quantities from a given participant’s activation data even if
the classifier was trained exclusively on the data from other
people. Finally, in the pictorial mode, classification errors
that confused similar quantities (e.g., confusing 3 with 5)
were more frequent than errors that confused dissimilar
quantities (e.g., confusing 1 with 5).

Quantity Classification Within Each

Presentation Mode

When the classifier was trained and tested on exemplars
of the three quantities (1, 3, and 5 irrespective of objects)
within only the pictorial mode, the mean rank accuracy for
quantity classification was 0.81, with all participants’ classi-
fication accuracies lying far above the chance level1 of .55
(this was the P < 0.05 level obtained for 10,000 random per-
mutations). Further exploration of individual quantity clas-
sification in the pictorial mode demonstrated rank
accuracies to be 0.88, 0.78, and 0.77 for quantities 1, 3, and 5
respectively with no reliable difference in classification
accuracies for quantities with the exception of 1 being
higher than both 3 and 5. In the digit-picture mode, the
mean rank accuracy was 0.66, reliably lower than in the pic-
torial mode (t(9) ¼ 3.79, P < 0.001), but still above chance
level for all but one participant, as shown in Figure 2. Thus
the main classification of quantities in the pictorial mode
was very high, whereas it was much lower but still gener-
ally above chance level in the digit-picture mode. Note that
for any given quantity, there were four different spatial con-
figurations, which suggests that high classification accuracy
in pictorial mode is not based on spatial positioning differ-
ences among the different quantities.

Cross-Mode Quantity Classification

When the classifier was trained on exemplars of quanti-
ties from the pictorial mode, the mean rank accuracy for

classifying quantities in the digit-picture mode was 0.56.
When the classifier was trained on exemplars of quantities
from the digit-picture mode, the mean rank accuracy for
classifying quantities in the pictorial mode was 0.59. The
poor classification across presentation modes suggests that
the neural representation of quantity in parietal areas is
primarily mode-specific, at least for the two presentation
modes used here.

Presentation Mode Classification

When the classifier was trained on exemplars of the two
modes (irrespective of quantities and objects), it was possi-
ble to accurately classify which of the two presentation
modes the participant was viewing, with a mean accuracy
of 0.83 (SE ¼ 0.02). (The accuracies for all ten participants
were above the chance level of P < 0.05). This would not
be at all surprising if occipital lobe voxels were among the
features. However, it is interesting to note that parietal
representations retain some footprints of the presentation
modality, consistent with the finding above of a lack of
cross-mode classification ability.

Cross-Object Quantity Classification

In the pictorial mode, when the classifier was trained on
exemplars of quantities of just one object, it was possible
to classify quantities of the other three objects with a mean
rank accuracy of .73 (SE ¼ 0.02) (chance level of P < 0.05
is 0.59), indicating some meta-object neural representation
of numbers in the pictorial mode. Additionally, successful
generalization of neural patterns across different objects
with different spatial configurations for any given quantity
suggests that the discrimination of individual quantities
was based on quantity differences rather than spatial posi-
tioning differences [When the classification was within the

Figure 2.

Within-participants quantity classification for the two modes of

presentation.

1Chance level is determined by a random permutation test to calcu-
late cutoff rank accuracy. The variables that are entered to compute
the chance level are number of classes, number of folds, number of
test items and number of iterations.
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same object as the classifier was trained on, the mean ac-
curacy was 0.80 (SE ¼ 0.03)].

In the digit-picture mode, there was little evidence of
any capability to classify quantities across objects. When
the classification was done within the same object as
trained on, the mean accuracy was .65 (SE ¼ 0.03).

Numerical Distance Effect

In the pictorial mode, there was evidence of monotonicity
in the neural representation of numerical values, indicated
by the classifier’s confusion errors in attempting to identify
a number from its neural patterns. When the correct label
was 1 or 5 and the classifier’s most probable predicted label
was incorrect, this incorrect guess was much more often the
proximal number than the distal number (e.g., if the label
for 5 was incorrect, the incorrect label was much more
likely to be 3 than 1). A paired t-test between the overall
means of types of errors revealed a significant distance
effect (Numerical Distance 1: M ¼ 0.79, SE ¼ 0.02; Numeri-
cal Distance 2: M ¼ 0.94, SE ¼ 0.02; t (9) ¼ 4.89, P < 0.001).

Between-Participants Quantity Classification

In the pictorial mode, when the classifier was trained on
exemplars of quantities (irrespective of objects) from 9 of
the 10 participants, it was able to classify quantities in the
10th, left-out, participant. This procedure was repeated for
all participants. Reliable accuracies were reached for all 10
participants, with a mean accuracy of 0.85 (0.68 represents a
chance level of P < 0.05 here), as shown by the filled bars in
Figure 3. However, in the digit-picture mode, this type of
cross-participant classification resulted in reliable accuracies
in only 2 out of the 10 participants (see unfilled bars in Fig.
4). Thus there was a large amount of commonality across
participants in the neural representation of quantities in the
pictorial mode but not in the digit-picture mode.

Within Participants Stability Maps for the Two

modes of Presentation

The two presentation modes produced stable voxels in
both same and different locations, as shown in Figure 4
and Table 1. In these stability maps, some of the voxels
may be coding for quantities while others may be coding
for the semantic properties of the objects.

The primary difference between the two modes was the
hemispheric asymmetry. The pictorial mode produced sta-
ble voxels bilaterally (i.e., in both left and right parietal
regions), whereas the digit-picture mode produced many
more stable voxels in left parietal areas. The voxels that
were common across the two modes were mostly located
in left parietal regions—superior parietal and (SPL) left
intraparietal sulcus (IPS), with only a few common voxels
in the right inferior parietal (IPL) regions. Most of the
right parietal stable clusters obtained in the pictorial mode
were in IPS and SPL.

The location of the stable clusters in right parietal and
some in left (IPS and SPL) corresponded with the coordi-
nates that previously have been implicated in numerical
processing [Cohen Kadosh et al., 2007; Dehaene et al.,
2003]. None of the clusters in bilateral IPS or SPL corre-
sponded to the locations implicated in the representation
of concrete nouns [Just et al., 2010]. However, some of the
clusters in left IPL in the digit-picture mode corresponded
with brain locations associated with the manipulability of
concrete objects [Just et al., 2010]. Thus, right parietal area
might contain representations of numbers mainly depicted
as concrete instances (or nonsymbolically presented),
whereas left parietal regions (IPS and SPL) may have
some representations for numbers independent of mode of
depiction (in addition to having representations for manip-
ulability in left IPL regions).

DISCUSSION

This study demonstrated that quantities of objects were
accurately decodable from neural activation patterns in pa-
rietal regions. Moreover, it showed, for the first time, that
the brain activation patterns evoked by quantities were
common across different objects and across participants, at
least in the pictorial-mode.

Some of the results of the current study can be related
to Eger et al.’s [2009] findings, but several fundamental
methodological differences should be noted. First, the nu-
merical stimuli used in two studies were different: the cur-
rent study depicted small quantities (1, 3, and 5) of
semantically meaningful objects (cars, tomatoes, hammers,
and dots), as well as presenting a combination of a digit
and a picture of an object, whereas Eger et al.’s Expt 1 pre-
sented larger quantities (4, 8, 16, and 32) of only dots, and
Expt 2 presented larger quantities (2, 4, 6, and 8) of dots

Figure 3.

Between-participants quantity classification for the two modes

of presentation.
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and digits. Second, this study asked participants to think
about properties of quantities of objects [Just et al., 2010;
Mitchell et al., 2008], whereas in Eger’s study subjects
were instructed to just keep the quantity in mind (digit or
dots) and then judge whether a subsequently presented
second quantity was numerically smaller or larger than
the first quantity.

The commonalities between our results and Eger et al.
include findings of (1) more accurate identification of non-
symbolically depicted quantities (dots or other objects)
than symbolic stimuli (digits); (2) some degree of overlap
between the nonsymbolic and symbolic quantity represen-
tations; and (3) greater similarity of neural representations
of two quantities that are numerically close to each other
in the case of pictorially depicted quantities. What the cur-
rent study found for the first time was that the brain acti-
vation patterns evoked by quantities in the pictorial mode
were largely common across different objects (indicating
the existence of some object-independent quantity repre-
sentation). That is, a classifier trained on the neural pat-
terns evoked by a quantity of one set of objects (say,
tomatoes) could accurately classify quantity representa-
tions evoked by other objects (such as hammers, cars and
tomatoes). A second important novel contribution of our

study was the finding in the pictorial mode of the com-
monality across participants of the neural representation
of quantities, indicating some universality of the neural
coding of small numbers.

Neural Representations of Numbers

The novel findings of common neural patterns associ-
ated with the representation of individual numbers across
different objects and different participants signify the pres-
ence of object-independent and participant-independent
neural codes for numbers in the pictorial mode. The
object-independent representation of a number suggests
that there are number-specific representations in our
brains generalizeable across different objects. The finding
of participant-independent quantity representation is con-
sistent with previous findings that much of the neural rep-
resentation of objects is common across people [Just et al.,
2010; Shinkareva et al., 2008]. These findings contribute to
the growing realization of how similarly human brains
implement neural representations for shared concepts.
How this commonality arises from some combination of
biological and experiential factors is an important question

Figure 4.

Within participants stability maps (averaged across participants) indicating stable voxels in at least

two or more participants. A: Pictorial mode of presentation. B: Digit-picture mode of

presentation.
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that can in some degree be addressed with current neuro-
developmental brain imaging techniques.

Current theories suggest that quantities depicted as a
number of distinct instances (pictorially, in this study) are
developmentally fundamental, compared to symbolically
conveyed quantities [Ansari, 2008; Dehaene, 1997; Piazza
et al., 2007; Verguts and Fias, 2004]. Perhaps it is due to this
fundamental nature that the neuronal substrate coding for
‘‘three-ness’’ or ‘‘one-ness’’ is common across participants.
Unlike quantities expressed as separate instances, digits are
cultural artifacts and learned later in life. It is possible that
variability in environmental and biological factors during
learning gives rise to larger individual differences in digit
representations. Consequently, the neural codes for individ-
ual numbers were found to be more variable across partici-
pants in the digit-picture mode in contrast to the shared
representation of a pictorially depicted quantity.

Interestingly, some studies have also suggested that
nonsymbolic quantities (pictorially depicted) are repre-
sented more coarsely in comparison to symbolic (digit-
picture mode in this study) quantities [Ansari et al., 2008;
Piazza et al., 2007]. On the basis of this idea of representa-
tional differences, the neural substrate underlying individ-
ual numbers might be largely overlapping across objects
in the pictorial-mode, but more object-specific in the digit-
picture mode.

Second, we also found a clear evidence of substantially
better quantity classification in the pictorial mode. This is
consistent with the findings of an earlier study that inves-
tigated the neural representation of symbolic digits and
nonsymbolic dots and reported that dots had higher accu-
racies than digits [Eger et al., 2009]. In this study, classifi-
cation of pictorially presented quantities was substantially
more accurate than quantities presented in the digit-pic-
ture mode. These findings agree with the idea of pictori-
ally presented quantities being more fundamental (or
primitive) developmentally and thus, perhaps still richly
(more numerous neuronal populations for pictorial-mode)
represented in the brain [Ansari, 2008; Eger et al., 2009].

Another factor that could be contributing to more accurate
classification in the pictorial mode than the digit-object
mode is the presence of spatial information in the pictorial
stimuli (that might be represented in the parietal area).

Previous behavioral studies have argued that quantifica-
tion of small quantities in a visual array (1–4) is faster and
more accurate in comparison to larger quantities (5 and
more) and that they have different underlying cognitive
mechanisms [Kaufman et al.,1949; Mandler and Shebo,
1982; Trick and Pylyshyn, 1993]. However, neuroimaging
studies have demonstrated that the systems for subitizing
and counting small numbers of objects both activate intra-
parietal regions and that the mechanisms are not separable
using imaging methods [Piazza et al., 2002]. The findings
of this study using multivoxel pattern analysis also
showed no reliable difference in classification accuracies
among the pictorially depicted quantities and thus are
consistent with the findings of the previous neuroimaging
study. This suggests that parietal regions have similarly
identifiable representations for all the three quantities
investigated (two within and one just outside subitizing
range). The classification accuracy of 1 being greater than
3 and 5 may be related to the finding that in macaques the
number of neurons responding to the quantity 1 is greater
than the number responding to 2, 3, 4, or 5, [Neider et al.,
2002]. It is possible that in humans as well as in nonhu-
man primates there are larger neuronal populations
responding to a single entity than to multiple ones.

Third, the study showed only partial commonality of
neural patterns between the two presentation modes with
poor quantity classification across them. Other studies
have demonstrated mostly distinct neuronal populations
coding for quantities in different formats [Cohen Kadosh
et al., 2007; Eger et al., 2009]. Here we showed that repre-
sentations for quantities in the two visual modes rely on
mostly different neuronal substrates. The locations of the
stable parietal voxels that were used for quantity classifica-
tion in each of the two modes (with voxels in the bilateral
parietal regions in the pictorial mode, and mostly in the

TABLE I. Distribution of stable voxels in the Parietal region; A: pictorial mode of presentation; B: digit-object

mode of presentation

No. of Voxels Radius

MNI Coordinates

x y z

A. Labels and coordinates of cluster centroids in pictorial presentation mode
Left Precuneus 12 7 �11 �53 16
Left IPS 108 17 �25 �77 37
Right IPS 87 12 27 �77 37
Right inferior parietal 36 7 40 �42 53
Left inferior parietal 12 5 �29 �45 53
Right superior parietal 17 5 22 �61 57

B. Labels and coordinates of cluster centroids in digit-object presentation mode
Left Inferior Parietal, Superior parietal and IPS 162 21 �37 �52 46
Right Inferior Parietal 17 6 43 �40 51

Minimum cluster size is 12 voxels and inclusion of at least two participants.
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left parietal regions in digit-picture mode) are consistent
with the idea of differential neural representations under-
lying quantities in these modes. A closer examination of
the common neural substrate between pictorial and digit-
object mode suggests that even though the right parietal
region is more responsive to quantities in the pictorial
mode, the voxels common to the two modes were mostly
located in the right hemisphere (with only a few in the
left). It has recently been shown that right IPS becomes,
over developmental time, specialized for the representa-
tion of both symbolic and nonsymbolic quantities [Hollo-
way and Ansari, 2011].

Previous neuroimaging studies that investigated number
representations using different notations (words, symbols,
and dots) and adaptation techniques (recovery paradigm)
have also demonstrated hemispheric asymmetry [Cohen
Kadosh et al., 2007; Holloway et al., 2010; Notebaert, et al.,
2011; Piazza et al., 2007]. Specifically, it has been shown
that the left parietal regions activated in response to both
number words [Cohen Kadosh et al., 2007] and symbolic
digits [Cohen Kadosh et al., 2007; Notebaert, et al., 2011]
but not for nonsymbolic quantities [Piazza et al., 2007]. A
recent neuroimaging study demonstrated that while left
parietal regions activated more in response to symbolic
quantities than nonsymbolic ones, right parietal regions
activated more for nonsymbolic quantities than symbolic
quantities [Holloway et al., 2010]. Additionally, left parie-
tal regions have also been associated with developmental
changes in mental arithmetic [Rivera et al., 2005] and prac-
tice [Grabner et al., 2007; Ischebeck et al., 2007] further
indicating that region’s importance for processing sym-
bolic quantities. This study (using multivariate analysis)
showed that the stable voxels underlying quantity repre-
sentations for the digit-object mode were located mostly in
the left parietal regions (with some in the right parietal
lobule). These findings are consistent with the idea of left
parietal regions being specialized for encultured symboli-
cally presented numbers [Ansari, 2007].

While there is robust evidence in support of left parietal
regions being specialized primarily for symbolic quantities,
the representation of nonsymbolic quantities is less under-
stood with respect to lateralization. The findings of the
current study indicate that there is bilateral representation
of quantity when presented in the pictorial mode with per-
haps more right parietal than left parietal involvement.
This is consistent with a recent study showing greater acti-
vation in the right parietal region for nonsymbolic than
symbolic quantities [Holloway et al., 2010]. Additionally, a
developmental study by Cantlon et al. [2006] reported that
a common neural substrate for nonsymbolic quantities in
preschool children and adults was found in right IPS sug-
gesting that right parietal have more primitive representa-
tions for nonsymbolic quantities shared by both children
and adults. While these studies showed differential roles
of parietal regions for numbers depicted in different nota-
tions, we demonstrated (using multivariate techniques)
that voxels underlying quantity representations for the

two modes, pictorially depicted and digit-object modes,
were differently located in the two hemispheres. Overall,
the findings indicate that the left parietal regions might be
mostly tuned for symbolic quantities in comparison to
right parietal that has greater neuronal representations for
nonsymbolic or pictorially depicted quantities (with some
overlapping representations across the input modes).

Finally, in the pictorial mode, the neural activation pat-
terns within parietal regions were more confusable for the
classifier for similar quantities. This suggests a neural repre-
sentational overlap between numbers that are numerically
close to each other and parallels the behavioral observations
of numerical distance effects [Moyer and Landeur, 1967].

CONCLUSIONS

The findings demonstrated the ability to identify indi-
vidual numbers based on neural patterns, indicating the
presence of stable neural representations of numbers. The
most novel findings were that the neural representations
for pictorially depicted or nonsymbolic quantities were
common across people and across the objects investigated.
Additionally, this study provided further support for Eger
et al.’s findings showing better individual number identifi-
cation of nonsymbolic or pictorially depicted quantities,
only partial neural representational overlap for individual
quantities across the two modes and a neural number line
with closer quantities having greater neural overlap than
more distant ones for the pictorial mode. On the basis of
the classification findings and the location of the voxels
that were predictive of quantity classification, we conclude
that the two hemispheres are differentially involved in
representing quantities in the two modes with left parietal
mostly tuned for symbolic quantities [Ansari et al., 2007;
Holloway et al., 2010] and right parietal to have greater
representations for nonsymbolic quantities [Cantlon et al.,
2006; Holloway et al., 2010]. However, despite these neural
representational differences between quantities depicted in
the two modes, there might be some overlapping regions
as well and, perhaps, these overlapping regions were
mostly located in right parietal areas (with some in left).

While the study provides several novel insights into the
semantic representation of numbers, it will be important
for future studies to investigate how these insights apply
to the representation of a larger set of consecutive num-
bers expressed in different notations and different input
forms and modalities.
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