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Recent multivariate analyses of fMRI activation have shown that discriminative classifiers such as Support
Vector Machines (SVM) are capable of decoding fMRI-sensed neural states associated with the visual
presentation of categories of various objects. However, the lack of a generative model of neural activity limits
the generality of these discriminative classifiers for understanding the underlying neural representation. In
this study, we propose a generative classifier that models the hidden factors that underpin the neural
representation of objects, using a multivariate multiple linear regression model. The results indicate that
object features derived from an independent behavioral feature norming study can explain a significant
portion of the systematic variance in the neural activity observed in an object-contemplation task.
Furthermore, the resulting regression model is useful for classifying a previously unseen neural activation
vector, indicating that the distributed pattern of neural activities encodes sufficient signal to discriminate
differences among stimuli. More importantly, there appears to be a double dissociation between the two
classifier approaches and within- versus between-participants generalization. Whereas an SVM-based
discriminative classifier achieves the best classification accuracy in within-participants analysis, the
generative classifier outperforms an SVM-based model which does not utilize such intermediate
representations in between-participants analysis. This pattern of results suggests the SVM-based classifier
may be picking up some idiosyncratic patterns that do not generalize well across participants and that good
generalization across participants may require broad, large-scale patterns that are used in our set of
intermediate semantic features. Finally, this intermediate representation allows us to extrapolate the model
of the neural activity to previously unseen words, which cannot be done with a discriminative classifier.
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Introduction

Recent multivariate analyses of fMRI activities have shown that
discriminative classifiers, such as Support Vector Machines (SVM), are
capable of decoding mental states associated with the visual
presentation of categories of various objects, given the corresponding
neural activity signature (Cox and Savoy, 2003; O'Toole et al., 2005;
Norman et al., 2006; Haynes and Rees, 2006; Mitchell et al., 2004;
Shinkareva et al., 2008). This shifts the focus of brain activation
analysis from characterizing the location of neural activity (traditional
univariate approaches) toward understanding how patterns of neural
activity differentially encode information in a way that distinguishes
among different stimuli. However, discriminative classification pro-
vides a characterization of only a particular set of training stimuli, and
does not reveal the underlying principles that would allow for
extensibility to other stimuli. One way to obtain this extensibility is to
construct a model which postulates that the brain activity is based on
a hidden intermediate semantic level of representation. Here we
develop and study a model that achieves this extensibility through its
ability to predict the activation for a new stimulus, based on its
relation to the semantic level of representation.

There have been a variety of approaches from different scientific
communities trying to capture the intermediate semantic attributes
and organization underlying object- and word-representation. Lin-
guists have tried to characterize the meaning of a word with feature-
based approaches, such as semantic roles (Kipper et al., 2006), as well
as word-relation approaches, such as WordNet (Miller, 1995).
Computational linguists have demonstrated that a word's meaning
is captured to some extent by the distribution of words and phrases
with which it commonly co-occurs (Church and Hanks, 1990).
Psychologists have studied word meaning in many ways, one of
which is through feature norming studies (Cree and McRae, 2003) in
which human participants are asked to list the features they associate
with various words. There are also approaches that treat the
intermediate semantic representation as hidden (or latent) variables
and use techniques like the traditional PCA and factor analysis, or the
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Table 1
List of 60 words.
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more recent LSA (Landauer and Dumais, 1997) and topic models (Blei
et al., 2003) to recover these latent structures from text corpora. Kemp
et al. (2007) have also presented a Bayesian model of inductive
reasoning that incorporates both knowledge about relationships
between objects and knowledge about relationships between object
properties. The model is useful to infer some properties of previously
unseen stimuli, based on the learned relationships between objects.
Finally, connectionists have long employed hidden layers in their
neural networks to mediate non-linear correspondences between
input and output. Hanson et al. (2004) proposed a neural network
classifier with hidden units to account for brain activation patterns,
but the learned hidden units are difficult to interpret in terms of an
intermediate semantic representation.

In the present work, functional Magnetic Resonance Imaging
(fMRI) data is used to study the hidden factors that underpin the
semantic representation of object knowledge. In an object-contem-
plation task, participants were presented with 60 line drawings of
objects with text labels and were instructed to think of the same
properties of the stimulus object consistently during each presenta-
tion. Given the neural activity signatures evoked by this visual
presentation, a multivariate multiple linear regression model is
estimated, which explains a significant portion of systematic variance
in the observed neural activities. In terms of semantic attributes of the
stimulus objects, our previous work (Mitchell et al., 2008) showed
that semantic features computed from the occurrences of stimulus
words within a trillion-token text corpus that captures the typical use
of words in English text can predict brain activity associated with the
meaning of these words. The advantage of using word co-occurrence
data is that semantic features can be computed for any word in the
corpus—effectively any word in existence. Nonetheless, these seman-
tic features were assessed implicitly through word usage and may not
capture what people retrieve when explicitly recalling features of a
word. Moreover, despite the success of this model, which uses co-
occurrences with 25 sensorimotor verbs as the feature set, it is hard to
determine the optimal set of features. In this paper, we draw our
attention to the intermediate semantic knowledge representation and
experiment with semantic features motivated by other scientific
communities.

Here we model the intermediate semantic knowledge with
features from an independently performed feature norming study
(Cree and McRae, 2003), where participants were explicitly asked to
list features of 541 words. Our results suggest that (1) object features
derived from a behavioral feature norming study can explain a
significant portion of the systematic variance in the neural activity
observed in our object-contemplation task. Moreover, we demon-
strate how a generative classifier1 that includes an intermediate
semantic representation (2) generalizes better across participants,
compared to a discriminative classifier that does not utilize such an
intermediate semantic representation, and (3) enables a predictive
theory that is capable of predicting fMRI neural activity well enough
that it can successfully match words it has not yet encountered to
their previously unseen fMRI images with accuracies far above chance
levels, which simply cannot be done with a discriminative classifier.
Categories Exemplars

Animal Bear, cat, cow, dog, horse
Body part Arm*, eye*, foot*, hand*, leg*
Building Apartment, barn, church, house, igloo*
Building part Arch*, chimney*, closet, door, window*
Clothing Coat, dress, pants, shirt, skirt
Furniture Bed, chair, desk, dresser, table
Materials and methods

The fMRI data acquisition data and signal processing methods
were previously reported in another publication (Mitchell et al.,
2008). Some central information about the data is repeated here.
1 We use the term generative classifier to refer to a classifier that bases its prediction
on a generative theory through some intermediate semantic representation. It is not
the same as the typical usage of a generative model in Bayesian community, although
one can adopt a fully Bayesian approach that models the intermediate semantic
representation as latent variables.
Participants

Nine right-handed adults (5 female, age between 18 and 32) from
the Carnegie Mellon community participated and gave informed
consent approved by the University of Pittsburgh and CarnegieMellon
Institutional Review Boards. Two additional participants were
excluded from the analysis due to head motion greater than 2.5 mm.

Experimental paradigm

The stimuli were line drawings and noun labels of 60 concrete
objects from 12 semantic categories with 5 exemplars per category.
Most of the line drawings were taken or adapted from the Snodgrass
and Vanderwart (1990) set and others were added using a similar
drawing style. Table 1 lists the 60 stimuli.

To ensure that each participant had a consistent set of properties to
think about, they were asked to generate and write a set of properties
for each exemplar in a separate session prior to the scanning session
(such as cold, knights, stone for castle). However, nothing was done to
elicit consistency across participants.

The entire set of 60 stimuli was presented 6 times during the
scanning session, in a different random order each time. Participants
silently viewed the stimuli and were asked to think of the same item
properties consistently across the 6 presentations. Each stimulus was
presented for 3 s, followed by a 7 s rest period, during which the
participants were instructed to fixate on an X displayed in the center
of the screen. There were two additional presentations of the fixation,
31 s each, at the beginning and at the end of each session, to provide a
baseline measure of activity. A schematic representation of the design
is shown in Fig. 1.

Data acquisition

Functional images were acquired on a Siemens Allegra 3.0 T
scanner (Siemens, Erlangen, Germany) at the Brain Imaging Research
Center of Carnegie Mellon University and the University of Pittsburgh
using a gradient echo EPI pulse sequence with TR = 1000 ms,
TE=30 ms and a 60° flip angle. Seventeen 5-mm thick oblique-axial
slices were imaged with a gap of 1-mm between slices. The
acquisition matrix was 64×64 with 3.125×3.125×5 mm voxels.

Data processing and analysis

Data processing and statistical analysis were performed with
Statistical Parametric Mapping software (SPM99, Wellcome Depart-
ment of CognitiveNeurology, London, UK). The datawere corrected for
slice timing,motion, linear trend, andwere temporally smoothedwith
a high-pass filter using 190 s cutoff. The data were normalized to the
MNI template brain image using 12-parameter affine transformation.
Insect Ant, bee*, beetle, butterfly, fly*
Kitchen Bottle, cup, glass*, knife, spoon
Man-made objects Bell*, key, refrigerator*, telephone, watch*
Tool Chisel, hammer, pliers, saw*, screwdriver
Vegetable Carrot, celery, corn, lettuce, tomato
Vehicle Airplane, bicycle*, car, train, truck

The asterisks mark the words that were not part of the Cree and McRae (2003) study.



Fig. 1. Schematic representation of experimental design for the 60-word object-thinking experiment.
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The data were prepared for regression and classification analysis
by being spatially normalized into MNI space and resampled to
3×3×6 mm3 voxels. We try to keep approximately the same
acquisition voxel size which has been used in many of our previous
studies and is adequate for a list of different cognitive tasks. Voxels
outside the brain or absent from at least one participant were
excluded from further analysis. The percent signal change (PSC)
relative to the fixation condition was computed for each object
presentation at each voxel. The mean of the four images (mean PSC)
acquired within a 4 s window, offset 4 s from the stimulus onset (to
account for the delay in hemodynamic response) provided the main
input measure for subsequent analysis. The mean PSC data for each
word or picture presentation were further normalized to have mean
zero and variance one to equate the variation between participants
over exemplars.

Furthermore, our theoretical framework does not take a position
on whether the neural activation encoding meaning is localized in
particular cortical regions. Shinkareva et al. (2007) identified single
brain regions that consistently contained voxels used in identification
of object categories across participants. The brain locations that were
important for category identification were similar across participants
and were distributed throughout the cortex where various object
properties might be neurally represented. Thus, we consider all
Fig. 2. Voxel clusters from the union of sta
cortical voxels and allow the training data to determine which
locations are systematically modulated by which aspects of word
meanings. Themain analysis selected the 120 voxels whose responses
to the 60 different items were most stable across presentations (many
previous analyses had indicated that 120 was a useful set size for our
purposes). Voxel stability was computed as the average pairwise
correlation between 60-item vectors across presentations.

The stable voxels were located in multiple areas of the brain. Fig. 2
shows voxel clusters from the union of stable voxels from all nine
participants. As shown, many of these locations are in occipital,
occipital-temporal, and occipital-parietal areas, with more voxels in
the left hemisphere. Table 2 lists the distribution of the 120 voxels
selected by the stability measure for each participant, sorted by major
brain structures and size of clusters.

For classifier analysis, voxel stability was computed using only the
training set within each fold in the cross-validation paradigm. For
within-participants analysis, where the training data consist of 5 of
the 6 presentations and the testing data consist of the remaining
presentation, the voxel stability was computed using only the training
data for that particular participant. For between-participants analysis,
where the training data consists of 8 of the 9 participants and the
testing data consist of the remaining participant, the voxel stability
was computed using only the training data for the 8 participants. The
ble voxels from all nine participants.



Table 2
Locations (MNI centroid coordinates) and sizes of the voxel clusters selected by the
stability measure.

Participant Label X Y Z Voxelsa Radius

P1 Occipital
R fusiform gyrus 31.5 −50.4 −10 24 7.02
L fusiform gyrus −26.9 −50.9 −11.7 21 6.13
L occipital middle −20.1 −98.7 6 21 6.03
L occipital inferior −15.1 −91.1 −10.2 13 5.22
R occipital middle 34.9 −76 13 6 4.72
R calcarine 6.2 −91.1 4 6 4.17

P2 Medial temporal
L parahippocampal
gyrus

−25 −42.2 −15 6 3.79

Occipital
R calcarine 15.5 −96 −0.9 70 9.73
L calcarine −16.6 −98.6 −4.1 22 7.1
L cuneus −20.6 −60 15.6 5 3.51

P3 Parietal
L precuneus −5.6 −57.5 24 5 2.65
Occipital
R calcarine 18.2 −93.5 2.8 75 11.26
L occipital middle −17.1 −98.3 −1.5 28 7.73

P4 Temporal
R fusiform gyrus 36.5 −40.1 −23 6 5.72
Parietal
L supramarginal gyrus −53.8 −33.1 33 10 4.56
L parietal inferior −35.4 −39.6 43 6 3.31
R parietal superior 19.4 −63.7 56.4 5 3.51
Occipital
L fusiform −28.6 −53.1 −14 12 6.59
R occipital middle 32 −86.7 19.5 12 5.36
L occipital superior −13.2 −84.7 40 9 5.69
L occipital middle −31.6 −87.5 24 9 5.4
R lingual 13.3 −101.2 −7.5 8 4.02

P5 Temporal
L fusiform gyrus −31.5 −42.9 −18.8 15 5.3
R fusiform gyrus 34.4 −41.6 −16.2 13 4.51
Occipital
L lingual −14.9 −89.7 −2.3 44 7.75
R calcarine 20.5 −94.6 −2.9 35 8.45

P6 Medial temporal
R parahippocampal
gyrus

25.9 −47.5 −13.2 10 6.47

Occipital
R calcarine 17.3 −96.6 −1.1 51 10.92
L occipital middle −19.4 −97.8 −3.1 23 8.56
L fusiform gyrus −23.8 −49.5 −9.2 13 5.68
R fusiform gyrus 30 −71.9 −9.6 5 3.76

P7 Temporal
L fusiform gyrus −28.8 −46.1 −16.5 20 5.96
Occipital
R calcarine 8.8 −96.1 −2.1 35 7.93
R fusiform gyrus 31.2 −49.9 −14.9 21 5.65
L calcarine −16 −98.8 −5.2 8 3.97
L lingual −9.8 −88.8 −11.1 7 4.17

P8 Temporal
L temporal inferior −45.5 −67.2 −7.7 14 5.09
Occipital
R lingual 7.7 −87.9 −6.4 43 9.64
L occipital middle −18.2 −97.4 −1.9 28 8.48
R calcarine 11.9 −100.3 −0.6 10 6.9

P9 Temporal
L fusiform gyrus −31.8 −39.8 −21.3 11 5.04
R temporal inferior 45 −64.4 −3.6 5 3.61
Medial temporal
R parahippocampal
gyrus

23.8 −42 −15 16 5.05

Occipital
R calcarine 20.6 −98 −2.5 19 5.42

(continued on next page)

Table 2 (continued)

Participant Label X Y Z Voxelsa Radius

P9 Occipital
L occipital middle −16.4 −102 4.5 8 5.61
L occipital middle −26.8 −88.4 35.1 7 4.15
L lingual −20.3 −44.8 −10 6 4.16
R occipital middle 37.5 −78.8 38.4 5 3.68

a The number of voxels per participant is less than 120 because of a cluster size
threshold of 5 voxels used in this table.
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focus on the most stable voxels effectively increased the signal-to-
noise ratio in the data and also served as a dimensionality reduction
tool that facilitated further analysis by classifiers.

Approach

In this study, we model hidden factors that underpin semantic
representation of object knowledge with a multivariate multiple
linear regression model. We adopt a feature-based representation of
semantic knowledge, in which a word's meaning is determined by a
vector of features. Two competing models based on Cree and McRae
(2003)'s feature norming study were developed and evaluated using
three types of criteria. The three types of evaluation criteria are a
regression fit to the fMRI data, the ability to decode mental states
given a neural activation pattern, and the ability to distinguish
between the activation of two previously unseen objects. Fig. 3 depicts
the flow chart of our approach.

Feature norming study

Oneway to characterize an object is to ask people what features an
object brings to mind. Cree and McRae's (2003) semantic feature
norming studies asked participants to list the features of 541 words.
Fortunately, 43 of these words were included in our fMRI study. The
words were derived from five domains that include living creatures,
nonliving objects, fruits, and vegetables. The features that participants
produced were a verbalization of actively recalled semantic knowl-
edge. For example, given the stimulus word house, participants might
report features such as used for living, made of brick, made by humans,
etc. Such feature norming studies have proven to be useful in
accounting for performance in many semantic tasks (Hampton, 1997;
McRae et al., 1999; Rosch and Mervis, 1975).

Because participants in the feature norming study were free to
recall any feature that came to mind, the norms had to be coded to
enable further analysis. Two encoding schemes, Cree and McRae's
(2003) brain region (BR) scheme and Wu and Barsalou's (2002)
detailed taxonomic (DT) encodings, were compared. BR encoding was
based on a knowledge taxonomy that adopts a modality-specific view
of semantic knowledge. That is, the semantic representation of an
object is assumed to be distributed across several cortical processing
regions known to process related sensory input and motor output. BR
encoding therefore groups features into knowledge types according to
their relations to some sensory/perceptual or functional processing
regions of the brain. For example, features for cow like eats grass
would be encoded as visual-motion, is eaten as beef as function, and is
animal as taxonomic in this scheme. By contrast, DT encoding captures
features from four major perspectives: entity, situation, introspective,
and taxonomic, which are further categorized into 37 hierarchically-
nested specific categories. For example, features for cow like eats grass
would be encoded as entity-behavior, is eaten as beef as function, and
is an animal as superordinate. Adapted from Cree and McRae (2003),
Table 3 lists the features and the corresponding BR and DT encodings
for the words house and cow. Also, Tables 4 and 5 list all the classes
and knowledge types in BR and DT encodings that are relevant to our
stimulus set.



Fig. 3. The flow chart of the generative model. First, the feature norming features associated with the word are retrieved from Cree and McRae (2003). Secondly, the feature norming
features are encoded into BR or DT knowledge types, which constitute the semantic representation. Then, a linear regression model learns the mapping between the semantic
representation and fMRI neural activity. Finally, a nearest neighbor classifier uses the predicted neural activity generated by the regression model to decode the mental state (word)
associated with an observed neural activity.

720 K.K. Chang et al. / NeuroImage 56 (2011) 716–727
The analyses below are applied only to those 43 of the 60 words
in our study that also occurred in Cree and McRae's study. The
missing stimuli are marked with asterisks in Table 1. A matrix was
thus constructed for each of the two types of encodings of the
feature norms, of size 43 exemplars by the number of knowledge
types (10 for BR encoding and 27 for DT encoding, which have non-
Table 3
Example of Concepts from Feature Norms.

Concept Feature BR Encoding DT Encoding

House Made by humans Encyclopedic Origin
Is expensive Encyclopedic Systemic property
Used for living in Function Function
Used for shelter Function Function
Is warm Tactile Internal surface property
A house Taxonomic Superordinate
Is large Visual-form and

surface properties
External surface property

Made of brick Visual-form and
surface properties

Made of

Has rooms Visual-form and
surface properties

Internal component

Has bedrooms Visual-form and
surface properties

Internal component

Has bathrooms Visual-form and
surface properties

Internal component

Is small Visual-form and
surface properties

External surface property

Has doors Visual-form and
surface properties

External component

Has windows Visual-form and
surface properties

External component

Made of wood Visual-form and
surface properties

Made of

Has a roof Visual-form and
surface properties

External component

Cow Lives on farms Encyclopedic Location
Is stupid Encyclopedic Evaluation
Is domestic Encyclopedic Systemic property
Eaten as meat Function Function
Eaten as beef Function Function
Used for producing milk Function Function
Is smelly Smell External surface property
Moos Sound Entity behavior
An animal Taxonomic Superordinate
An mammal Taxonomic Superordinate
Is white Visual-color External surface property
Is black Visual-color External surface property
Is brown Visual-color External surface property
Has 4 legs Visual-form and

surface properties
External component

Has an udder Visual-form and
surface properties

External component

Is large Visual-form and
surface properties

External surface property

Has legs Visual-form and
surface properties

External component

Has eyes Visual-form and
surface properties

External component

Produces milk Visual-motion Entity behavior
Eats grass Visual-motion Entity behavior
Produces manure Visual-motion Entity behavior
Eats Visual-motion Entity behavior
zero entries). A row in the matrix corresponds to the semantic
representation for an exemplar, where elements in the row
correspond to the number of features (for that exemplar)
categorized as particular knowledge types. Normalization consists
of scaling the row vector of feature values to unit length.
Consequently, these matrix representations encoded the meaning
of each exemplar in terms of the pattern distributed across different
knowledge types. For example, the word house would have a higher
value in the visual form and surface properties knowledge type, as
opposed to sound or smell, because people tended to recall more
features that described the appearance of a house rather than its
sound or smell.

Regression model

Our generative model attempts to predict the neural activity
(mean PSC), by learning the correspondence between neural
activation and object features. Given a stimulus word, w, the first
step (deterministically) encoded the meaning of w as a vector of
intermediate semantic features, using BR or DT. The second step
predicted the neural activity level of the 120 most stable voxels in the
brain with a multivariate multiple linear regression model. The
regression model examined to what extent the semantic feature
vectors (explanatory variables) can account for the variation in neural
activity (response variable) across the 43 words. R2 measures the
amount systematic variances explained in the neural activation data.
All explanatory variables were entered into the regression model
simultaneously. More precisely, the predicted activity av at voxel v in
the brain for word w is given by

av = ∑
n

i=1
βvifi wð Þ + εv

where fi(w) is the value of the ith intermediate semantic feature for
word w, βvi is the regression coefficient that specifies the degree to
which the ith intermediate semantic feature activates voxel v, and εv is
the model's error term that represents the unexplained variation in
the response variable. Least squares estimates of βvi were obtained to
minimize the sum of squared errors in reconstructing the training
Table 4
Cree and McRae (2003)'s Brain Region (BR) Encoding Scheme.

Class Knowledge type Frequency Example

Visual Visual color 32 Celeryb is greenN
Visual form and
surface properties

252 Houseb is made of bricksN

Visual motion 22 Cowbeat grassN
Other primary
sensory-processing

Smell 2 Barnb is smellyN
Sound 7 Catbbehavior—meowsN
Tactile 20 Bedb is softN
Taste 3 Cornb tastes sweetN

Functional Function 142 Hammer bused
for poundingN

Miscellaneous Taxonomic 62 SkirtbclothingN
Encyclopedic 132 Carb requires gasolineN



Table 5
Wu and Barsalou (2002)'s Detailed Taxonomic (DT) Encoding Scheme.

Class Knowledge type Frequency Example

Entity Associated abstract
entity

1 Churchbassociated with
religionN

Entity behavior 26 Catbbehavior—meowsN
External component 139 Chairbhas 4 legsN
External surface
property

85 Celeryb is greenN

Internal Component 24 Airplanebhas enginesN
Internal surface
property

12 Cornb tastes sweetN

Larger whole 3 Spoonbpart of table settingN
Made-of 47 Houseb is made of bricksN
Quantity 3 Butterflybdifferent typesN
Systemic property 36 Knifeb is dangerousN

Situation Action 9 Screwdriverb is hand heldN
Associated entity 24 Shirtbworn with tiesN
Function 116 Hammer bused for poundingN
Location 38 Keysb found on chainsN
Origin 5 Tomatobgrows on vinesN
Participant 17 Desk bused by studentsN
Time 5 Coatbworn for winterN

Taxonomic Coordinate 1 Cupba mugN
Individual 0 N/A
Subordinate 9 Pantsbe.g. jeansN
Superordinate 52 SkirtbclothingN
Synonym 0 N/A

Introspective Affect emotion 0 N/A
Cognitive operation 0 N/A
Contingency 12 Carbrequires gasolineN
Evaluation 10 Dogb is friendlyN
Negation 0 N/A

Table 6
Regression analysis R2.

Model Mean SD Participants

P1 P2 P3 P4 P5 P6 P7 P8 P9

BR 0.35 0.07 0.47 0.30 0.29 0.43 0.31 0.29 0.36 0.29 0.39
DT 0.58 0.04 0.61 0.56 0.53 0.62 0.59 0.59 0.64 0.52 0.58
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fMRI images. This least squares estimate of the βvi yields the
maximum likelihood estimate under the assumption that εv follows
a Noormal distribution with zeromean. A small L2 regularization with
lambda=0.5 was added to avoid rank deficiency.

The use of a linear regression model to model the hidden factors is
not new to analysis of neural activity. Indeed, both linear regression
analysis and Statistical Parametric Mapping (SPM)–the most com-
monly used technique for fMRI data analysis–belong to the more
general mathematical paradigm called Generalized Linearized Models
(GLM). GLM is a statistical inference procedure that models the data
to partition the observed neural response into components of interest,
confounds, and error (Friston, 2005). Specifically, GLM assumes a
linear dependency among the variables and compares the variance
due to the independent variables against the variance due to the
residual errors. While the linearity assumption underlying the general
linearized model may be overly simplistic, it reflects the assumption
that fMRI activity often reflects a superimposition of contributions
from different sources, and has provided a useful first order
approximation in the field.

The intermediate semantic features associated with each word are
therefore regarded as the hidden factors or sources contributing to the
object knowledge. The trained regression model then weights the
influence of each source and linearly combines the contribution of
each factor to produce an estimate of the resulting neural activity. For
instance, the neural activity image of the word housemay be different
from that of cow in that the contribution from the factor
corresponding to the item's function (what it is used for) plays a
more significant part for house and that the contribution from the
sensory factor plays a more significant part for cow, as depicted in the
sensory/functional theory.

Classifier model

Classifiers were trained to identify cognitive states associated with
viewing stimuli from the evoked pattern of functional activity (mean
PSC). Classifierswere functions f of the form: f:mean_PSC→Yi, i=1,…n,
where Yiwere the sixty exemplars, andmean_PSCwas a vector ofmean
PSC voxel activation level, as described above. To evaluate classification
performance, data were divided into training and test sets. A classifier
was built from the training set and evaluated on the left-out test set.

In this study, two classifiers were compared: a Support Vector
Machine (SVM) classifier that does not utilize a hidden layer
representation and a nearest neighbor classifier that utilizes a hidden
layer representation learned in the regression analysis. The SVM
classifier (Boser et al., 1992) is a widely-used discriminative classifier
that maximizes the margin between exemplar classes. The SVM
classifier is implemented in a software package called SVM-light,
which is an efficient implementation of SVM by Thorsten Joachims
and can be obtained from http://svmlight.joachims.org. On the other
hand, the nearest neighbor classifier proposed here uses the
estimated regression weights to generate predicted activity for each
word. The regression model first estimates a predicted activation
vector for each of the 60 objects. Then, a previously unseen observed
neural activation vector is identified with the class of the predicted
activation that had the highest correlation with the given observed
neural activation vector.

Our approach is analogous in someways to research that focuses on
lower-level visual features of picture stimuli to analyze fMRI activation
associatedwith viewing the picture (O'Toole et al., 2005; Hardoon et al.,
2007; Kay et al., 2008). A similar generative classifier is usedbyKay et al.
(2008) where they estimate a receptive-field model for each voxel and
classify an activation pattern in terms of its similarity to the predicted
brain activity. Our work differs from these efforts, in that we focus on
encodings of more abstract semantic features signified by words and
predict brain activity based on these semantic features, rather than on
visual features that encode visual properties.

Results

Using feature norms to explain the variance in neural activity

The regression models were assessed in terms of their ability to
explain the variance in neural activity patterns. A multivariate
multiple linear regression was run for each participant, using either
BR or DT encoding as explanatory variables, and average neural
activity (mean PSC) across 120 most stable voxels as response
variables. Specifically, DT encoding (with its 27 independent
variables) accounted for an average of 58% of the variance in neural
activity, whereas BR encoding (with its 10 independent variables)
accounted for an average of 35% of the variance. R2 is higher for DT
than for BR for all 9 of the participants, as shown in Table 6. Notice that
DT encoding outperforms BR encoding in explaining the variance in
neural activity pattern, even though Cree and McRae (2003) found
that the two encodings produce similar results in their hierarchical
clustering analysis of behavioral data and that they both can be used
to explain the tripartite impairment pattern in category-specific
deficit studies. This difference may, however, simply be due to the
different number of parameters (explanatory variables) that the two
regression models use. Akaike information criterion (AIC) is a
measure of the goodness of fit that accounts for the tradeoff between
the accuracy and complexity of different models and is invariant to
the number of parameters. The relative values of AIC scores are used
for model selection among a class of parametric models with different
numbers of parameters, with the model with lowest AIC being

http://svmlight.joachims.org
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preferred. The BR decoding yields an average AIC score of −37.18,
whereas the DT encoding yields an average AIC score of−23.93. Thus,
it appears that the difference in regression fit may be due to the
different number of parameters that the two regression models use.
We further explore this issue in the discussion section.

The regression models produce a predicted neural activity pattern
for each word, which can be compared to the observed pattern. For
example, Fig. 4 shows one slice of both the observed and the predicted
neural activity pattern for the words house and cow. In each case, the
predicted activity is more similar to the observed activity of the target
word than to the other word.

Classifying mental states

Given that the semantic feature vectors can account for a
significant portion of the variation in neural activity, the predictions
from the regression model can be used to decode mental states of
individual participants. This was effectively a 43-way word classifi-
cation task, where the attributes were neural activity vectors and the
classes were 43 stimulus items. This analysis can be performed both
within participants (by training the classifier on a subset of the
participant's own data and then testing on an independent, held-out
subset) and between-participants (training on all-but-one partici-
pants’ data and testing on the left-out one).

For the within-participants analysis, a regression model was
developed from the data from 4 out of 6 presentations of a participant
and applied to the average activation of the two remaining presen-
tations of the same participant, using a nearest neighbor classifier to
classify the neural activity pattern. A regression model using BR or DT
encoding classified the items from the held-out presentations with an
average of 72% and 78% rank accuracy, respectively. Since multiple
classes were involved, rank accuracies are reported, which measure
the percentile rank of the correct word within a list of predictions
made by the classifier (Mitchell et al., 2004). The rank accuracy for
Fig. 4. Observed vs. predicted neural activities at left parahippocampal gyrus (Brodmann ar
observed neural activity vector is taken from participant P1, whereas the predicted neural
variables and 120 most stable voxels as response variables. In each case, the predicted activ
suggesting that the predicted activity may be useful to classify words.
each participant, along with the 95% confidence interval, estimated by
10,000 bootstrapped samples, is reported in Fig. 5. All classification
accuracies were significantly (pb0.05) different from a chance level of
50% determined by permutation testing of class labels. DT encoding
performed significantly better (pb0.05) than BR encoding for 7 out of
9 participants. Furthermore, the generative classifiers were compared
with the SVM classifier which does not utilize a hidden layer
representation. The SVM classifier, which achieved an average of
84% rank accuracy, performed significantly (pb0.05) better than the
two generative classifiers for 7 out of 9 participants.

For the between-participants analysis, a regression model was
developed from the data from 8 out of 9 participants and applied to
the average activation of all possible pairs of presentations in the
remaining participant, using a nearest neighbor classifier to classify
the neural activity pattern. A regression model using BR or DT
encoding classified the items from the held-out subject with an
average of 68% and 70% rank accuracy, respectively. The rank accuracy
for each participant, along with the 95% confidence interval estimated
by 10,000 bootstrapped samples, is reported in Fig. 5. All classification
accuracies were significantly (pb0.05) different from a chance level of
50% determined by permutation testing of class labels. For 7 out of 9
participants, the difference between BR and DT encoding was not
significantly (pb0.05) different. Furthermore, the generative classi-
fiers were compared with the SVM classifier which does not utilize a
hidden layer representation. Unlike in the within-participants
classification, the SVM here performed poorly, achieving a mean
rank accuracy of only 63%, and obtaining a significantly (pb0.05)
lower rank accuracy than the two generative classifiers for 5 out of 9
participants.

Distinguishing between the activation of two unseen stimuli

Can the predictions from the regression model be used to classify
the mental states of participants on words that were never seen
ea 37, coordinates −28.125, −43.75, −12) for the stimulus words house and cow. The
activity vector is estimated by the regression model with BR encoding as explanatory
ity is more similar to the observed activity of the target word than to the other word,



Fig. 5. Decoding mental states given neural activation pattern. A discriminative SVM classifier, which utilizes no hidden layer representation, is compared to two generative nearest
neighbor classifiers which extend the regression model, with BR or DT as the explanatory variables. The dashed line indicates chance level at 50%. Participants are sorted according to
rank accuracy of the BR model. (a) Within-participants analysis, (b) between-participants analysis. Whereas the discriminative SVM classifier performs the best in the within-
participants classification, the generative classifiers generalize better in the between-participants classification.
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before by the model? In other words, can the regression model
generalize to make predictions for a previously unseen word, given
the values of the independent variables (the semantic features) for
that word? To test this possibility, all possible pairs of the 43 words
were held out (one pair at a time) from the analysis, and a
multivariate multiple linear regression model was developed from
the data of the remaining 41 words, with semantic feature vectors
(either the BR or DT encoding) as the explanatory variables, and
observed neural activity vectors (mean PSC across 120 most stable
voxels) as the response variables. The estimated regression weights
were then used to generate the predicted activation vector for the two
unseen words, based on the feature encodings of those two words.
Then, the observed neural activation vector for the two unseen words
Fig. 6. Distinguishing between two unseen words. Two generative nearest neighbor classifie
are shown. The dashed line indicates chance level at 50%. Participants are sorted according
was identified with the class of the predicted activation vector with
which it had the higher correlation.

A regression model using BR or DT encoding correctly classified an
average of 65% and 68% of the unseen words, respectively. The classi-
fication accuracy for each participant, along with the 95% confidence
interval estimated by 10,000 bootstrapped samples, is reported in
Fig. 6. All classification accuracies were significantly (pb0.05) higher
than a chance level of 50% determined by permutation testing of class
labels. Unlike the case in the regression analysis and word classi-
fication, there is no clear difference in the ability of the two encoding
schemes to distinguish between two unseen words. For 1 participant,
the BR encoding performed significantly better than the DT encoding,
but for 2 other participants, the DT performed significantly better.
rs which extend the regression model, with BR or DT encoding as explanatory variables,
to accuracy of BR encoding.
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There are no significant differences between BR and DT encoding for
the remaining 6 participants.

Discussion

The results indicate that the features from an independent feature
norming study can be used in a regression model to explain a
significant portion of the variance in neural activity in this 43-item
word–picture stimulus set. Moreover, the resulting regression model
is useful for both decoding mental states associated with the visual
presentation of 43 items and distinguishing between two unseen
items. Although the proposed generative nearest neighbor classifier
that utilizes a hidden layer does not outperform a discriminative SVM
classifier in the within-participants classification, it does outperform
the SVM classifier in between-participants classification, suggesting
that the hidden, semantic features do provide a mediating represen-
tation that generalizes better across participants. Furthermore, the
hidden factors allow us to extrapolate the neural activity for unseen
words, which simply cannot be done in a discriminative classifier.

Comparing the generative classifier and discriminative classifier

There appears to be a double dissociation between the two
classifier approaches and within- versus between-participants gen-
eralization. Whereas an SVM-based discriminative classifier achieves
the best classification accuracy in within-participants analysis, the
generative classifier outperforms an SVM-based model which does
not utilize such intermediate representations in a between-partici-
pants analysis. In fact, there is a strong negative correlation (p=
−0.79) between the within-participants difference and the between-
participants difference between the models. That is, the better SVM is,
relative to DT, at decoding brain activity within participants, the
worse SVM is, again relative to DT, at decoding brain activity across
participants. This pattern of results suggests the SVM-based classifier
may be picking up some idiosyncratic patterns that do not generalize
well across participants and that good generalization across partici-
pants may require broad, large-scale patterns that are used in our set
of intermediate semantic features.

A discriminative SVM classifier attempts to learn the function that
maximizes the margin between exemplar classes across all presenta-
tions/subjects. While this strategy is the current state-of-the-art
classification technique and indeed yields the best performance in
within-participants classification, it works less well in between-
participants classification when there is not sufficient data to learn
complex functions that would capture individual differences (or when
that the function is too complicated to learn). On the contrary, the
regression model does not attempt to model the differences in neural
activity across presentations/subjects. Instead, the regression model
averages out the differences across presentation/subjects and learns
to estimate the average of the neural activity that is available in the
training data. Specifically, the regression model learns the correspon-
dence between neural activation and object features that accounts for
the most systematic variance in neural activity across the 43 words.
The advantage is two-fold. First, sample mean is the uniformly
minimum-variance unbiased estimator of population mean of neural
activity. Thus, to predict the neural activity of a previously unseen
presentation or individual, one of the best unbiased estimators is the
average of the neural activity of the same word available in the
training data. But simply taking the sample mean does not allow
prediction of a previously unseen word—there is no data for it. Thus,
by learning the correspondence between neural activation and object
features, the regression model has the second advantage that it can
extrapolate to predict the neural activity for unseen words, as long as
there is access to the object features of the unseen words, which can
be assumed given access to the large scale feature-norming studies
and the various linguistic corpora.
Encoding feature norming features into knowledge types

In our analysis, we encode the feature norming features into
knowledge types. The generative models work with knowledge types,
not with knowledge content. For instance, it would matter for the
models whether a house is associated more often with surface
property, but not the exact property like is large or is small. As
another example, it matters that a cow is associated more often with
entity behavior, but it does not matter what type of behavior the cow
executes (e.g. eat grass or produce milk). The model discriminates
between a house and a cow by the pattern distributed across different
knowledge types (e.g. a house is described with more surface
properties and a cow is described with more entity behaviors), but
not the actual features listed (e.g. a house is large and a cow eats grass).
Thus, our intermediate semantic representation encodes word
meaning at the level of knowledge types. From this viewpoint it is
less surprising that this type of intermediate representation gen-
eralizes well across participants. Good generalization across partici-
pants may require broad, large-scale patterns, while idiosyncratic
patterns may be related to more fine-scale patterns of activity that do
not survive the inter-participants differences in anatomy.

Comparing BR and DT encoding

Different encodings (e.g. BR or DT) on the same feature norming
set, however, led to different regression fits and classification
accuracies. The DT encoding outperformed BR encoding in the
regression analysis and in within-participants mental state classifica-
tion, but the phenomenon diminishes in between-participants mental
state classification and when distinguishing between two unseen
stimuli. The former finding is surprising at first, since Cree and McRae
(2003) reported that the two encodings performed similarly in their
hierarchical clustering analysis in explaining seven behavioral trends
in category deficits. The difference obtained between the two types of
feature norm encodings in their account of brain activation data could
have arisen because one encoding is truly superior to the other, but
there are also technical differences between the models that merit
consideration. Specifically, the phenomenon called overfitting refers to
a regression model with more predictor variables being able to better
tune to the data and as a result overfit. Consequently, the DT regres-
sion model with its encoding of 27 knowledge types (independent
variables) would overfit more easily to data than a BR regression
model that utilizes 10 knowledge types.

The overfitting phenomenon can be considered more precisely by
examining each model's performance under the three evaluation
criteria, which, though correlated, measure different constructs and
have different profiles. First, the regression fit measures the amount of
systematic variance explained by the regressor variables, and their
ability to re-construct the neural images. Second, the word classifi-
cation accuracy measures the degree to which the predicted neural
image is useful for discriminating among stimuli. Third, classification
on novel stimuli measures how well the model generalizes to
previously unseen words. Whereas regression analysis is performed
on all available data, classification analysis (especially classification of
novel stimuli, in our case distinguishing between two unseen words)
is cross validated (train and test on different data set) and is less prone
to overfitting.

To compare the two encoding schemes while equating the number
of independent variables, a step-wise analysis was performed to
gradually enter additional variables in the regression model, instead
of entering all of them simultaneously. As the number of knowledge
types included in the DT encoding increases, the regression fit keeps
increasing, as shown in Fig. 7a, but the classification accuracy on novel
stimuli, shown in Fig. 7b, increases at first but peaks and gradually
decreases—clear evidence of overfitting.With fewer knowledge types,
the BR encoding overfits less to the data and generalizes better to



Fig. 7. Step-wise analysis. (a) Step-wise regression analysis, (b) step-wise distinguishing between two unseen stimuli. With finer distinction of knowledge types, DT encoding is
more prone to overfitting than BR encoding. As the number of knowledge types in DT encoding is increased, the regression fit keeps increasing, but classification accuracy on unseen
stimuli increases at first but peaks and gradually decreases—clear evidence of overfitting. With fewer knowledge types, BR overfits to a lesser extent.

Table 8
Each DT knowledge type's ability to classify mental state.

Knowledge type Accuracy

Internal component 0.59
Entity behavior 0.58
Associated entity 0.56
Made of 0.56
Location 0.56
Contingency 0.55
Function 0.55
Subordinate 0.54
Systemic property 0.54
Evaluation 0.53
Participant 0.53
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unseen words. Moreover, the performance of the BR encoding peaks
when about 6 knowledge types are entered into the regressionmodel,
reaching an average accuracy of 68%, whereas the performance of the
DT encoding peaks when about 8 knowledge types are used, reaching
an average accuracy of 77%. Notice that, although the BR and DT
encodings are constructed subject to different criteria, the features of
the two encoding schemes that are found to be the most important in
the step-wise analysis are similar. The underlying semantic features
that provide the best account of the neural activation data consist of
taxonomic and visual features (e.g. visual color, visual motion, and
function for the BR encoding and internal component, entity behavior,
and associated entity for the DT encoding). Tables 7 and 8 show the
ranked order list of each of the BR knowledge type and each of the DT
knowledge type's ability to classify mental state (within-participants
analysis, averaged over participants), respectively. Thus the superfi-
cial differences between BR and DT feature encoding schemes lessen
or disappear in the light of more sensitive assessments, and the
modeling converges on some core encoding features that provide a
good converging account of the data.

Comparing feature norming features and word–co-occurrence features

The various models described here were compared to a similar
analysis that used features derived from word co-occurrence in a text
corpus (Mitchell et al., 2008). In that model, the features of each word
were its co-occurrence frequencies with each of 25 verbs of
sensorimotor interaction with physical objects, such as push and see.
Table 7
Each BR knowledge type's ability to classify mental states.

Knowledge type Accuracy

Visual-color 0.58
Visual-motion 0.58
Function 0.53
Sound 0.53
Taxonomic 0.52
Tactile 0.52
Encyclopedic 0.51
Smell 0.51
Taste 0.51
Visual-form and surface properties 0.50
The model using co-occurrence features produced an average R2 of
0.71when accounting for the systematic variance in neural activity, an
average rank accuracy of 0.82 when classifying mental states within-
participants, an average rank accuracy of 0.75when classifyingmental
states across-participants, and an average accuracy of 0.79 when
distinguishing between two previously unseen stimuli. While the
performance in rank accuracy when classifying mental states is not
statistically different (pb0.05) from that of DT encoding, the
advantage of the co-occurrence model in distinguishing between
two unseen stimuli is statistically significant (pb0.05). One explana-
tion may be that the encoded object-by-knowledge-type matrices are
sparse and heavily weighted in a handful of knowledge types (e.g.
External component 0.53
Action 0.53
External surface property 0.53
Superordinate 0.52
Larger whole 0.52
Time 0.52
Internal surface property 0.52
Origin 0.52
Quantity 0.51
Associated abstract entity 0.51
Coordinate 0.51
Affect emotion 0.50
Cognitive operation 0.50
Individual 0.50
Negation 0.50
Synonym 0.50



Table 9
Restricting analysis space through ROIs.

Model All Frontal Temporal Parietal Occipital Fusiform Hippocampus

(a) Regression fit to the fMRI data (R2)
BR 0.35 0.27 0.27 0.32 0.30 0.38 0.24
DT 0.58 0.55 0.55 0.58 0.56 0.61 0.52

(b) Ability to decode mental states, within participants (rank accuracy)
BR 0.72 0.57 0.60 0.64 0.70 0.67 0.52
DT 0.78 0.58 0.62 0.66 0.77 0.69 0.53

(c) Ability to decode mental states, within participants (rank accuracy)
BR 0.68 0.47 0.47 0.57 0.59 0.61 0.50
DT 0.70 0.46 0.47 0.56 0.60 0.60 0.49

(d) Ability to distinguish between the activation of two previously unseen words
(accuracy)

BR 0.65 0.60 0.57 0.66 0.62 0.69 0.49
DT 0.68 0.61 0.60 0.69 0.64 0.70 0.51
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visual knowledge types). Feature normingmay have fared better if the
features corresponded more closely to the types of interactions with
objects that are suggested by the 25 sensorimotor verbs. The
shortcoming of feature norming in accounting for participants’
thoughts when they think about an object is that participants may
fail to retrieve a characteristic but psychologically unavailable feature
of an object. For example, for an item like celery, the attribute of taste
may be highly characteristic but relatively unavailable. By contrast,
using a fixed set of 25 verbs ensures that all 25 will play a role in the
encoding. One way to bring the two approaches together is to ask
participants in a feature norming study to assess 25 features of an
object that correspond to the verbs.

Regardless of whether one uses feature norms or text co-
occurrences, choosing the best set of semantic features is a challenging
problem. For example, it is not clear from the analyses above whether
a different set of 25 verbs might not provide a better account. To
address these issues, additional modeling was done with corpus co-
occurrence features using the 485 most frequent verbs in the corpus
(including the 25 sensorimotor verbs reported in Mitchell et al.,
2008). A greedy algorithmwas used to determine the 25 verbs among
the 485 that optimize the regression fit. The greedy algorithm easily
overfitted the training data and generalized less well to unseenwords.
Mitchell et al. (2008) hand-picked their 25 verbs according to some
conjectures concerning neural representations of objects. Similarly, it
might be worthwhile to consider some conjectures revealed in
behavioral feature norming studies when picking the set of co-
occurrence semantic features. Further study is required.

Voxel selection method

One property of this study is that it focused on only themost stable
voxels, which may have biased the findings in favor of encodings of
visual attributes of the items. The voxel selection procedure increases
the signal-to-noise ratio and serves as an effective dimensionality
reduction tool that empirically derives regions of interest by assuming
that the most informative voxels are those that have activation
patterns that are stable across multiple presentations of the set of
stimuli. The ability of our models to perform classification across
previously unseen words suggests we have, to some extent,
successfully captured this intermediate semantic representation.
Whether the voxels extracted by this procedure correspond to the
human semantic system may be task-dependent. For instance, in our
task where the stimulus presentations consist of line drawings with
text labels, the voxels extracted by this procedure are mostly in the
posterior and occipital regions, since our stimuli consist of easily
depicted objects and the visual properties of the stimuli are the most
invariant part of the stimuli. Indeed, visual features are among the
most important features that account for our neural activation data. If
the stimulus presentation consists of only line drawings or text labels,
different sets of voxels might be selected. Shinkareva et al. (2007)
studied the exact question of the neural representation of pictures
versus words. They applied similar machine learning methods on
fMRI data to identify the cognitive state associated with viewings of
10 words (5 tools and 5 dwellings) and, separately, with viewings of
10 pictures (line drawings) of the objects named by the words. In
addition to selecting voxels from the whole brain, they also identified
single brain regions that consistently contained voxels used in
identification of object categories across participants. We performed
a similar analysis to restrict the analysis space to some predetermined
regions of interests. That is, instead of selecting 120 voxels from the
whole brain, the voxel selection is applied separately to the frontal
lobe, temporal lobe, parietal lobe, occipital lobe, fusiform gyrus, and
hippocampus. When only a single region of interest is considered, the
highest category identification in the within-participant mental state
decoding task is achieved when analysis space is restricted within the
occipital lobe, as shown in Table 9. However, other regions of interests
like the parietal lobe and the fusiform gyrus also carry important
information to decode mental state between participants and to
distinguish between the activation of two previously unseen words.
Indeed, selecting voxels from the whole brain yields the best category
identification in the classifier analysis.
Conclusions and contributions

The results indicate that features from an independently per-
formed feature norming study or word co-occurrence in web corpus
can explain a significant portion of the variance in neural activity in
this task, suggesting that the features transfer well across tasks, and
hence appear to correspond to enduring properties of the word
representations. Moreover, the resulting regression model is useful
for decoding mental states from their neural activation pattern. The
ability to perform this classification task is remarkable, suggesting
that the distributed pattern of neural activity encodes sufficient signal
to discriminate differences among stimuli.

Our major contribution is to shift the focus to the hidden factors
that underpin semantic representation of object knowledge. Func-
tional neuroimaging research has been focused on attempting to
identify of the functions of cortical regions. Here we present one of the
first studies to investigate some intermediate cortex-wide represen-
tations of semantic knowledge and further apply it in a classification
task. Akin to the recent multivariate fMRI analysis which shifted the
focus from localizing brain activity toward understanding how
patterns of neural activity encode information in an intermediate
semantic representation, we take one further step and ask (1) what
intermediate semantic representation might be encoded to enable
such discrimination and (2) what is the nature of this representation?

There are several advantages to work with an intermediate
semantic representation. In this study, we have demonstrated how
learning themapping between feature and neural activation enables a
predictive theory that is capable of extrapolating the model of the
neural activity to previously unseen words, which cannot be done
with a discriminative classifier. Another advantage of workingwith an
intermediate semantic representation is that features in the interme-
diate semantic representation are more likely to be shared across
experiments. For example, in one experiment, the participant may be
presented the word dog, while the word cat is shown in another
experiment. Even though the individual category differs, there are
many features that are shared (e.g. is a pet, has 4 legs, etc.) between
the two words. Learning the mapping between features and voxel
activation instead of the mapping between categories and voxel
activation may facilitate data to be shared across experiments. This is
especially important when brain imaging data are relatively more
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expensive to acquire and that many classifier techniques would
perform significantly better if more training data were available.

Although we propose a specific implementation of the hidden
layer representation with a multivariate multiple linear regression
model estimated from features of a feature norming study, we do not
necessarily commit to this specific implementation. We look forward
to future research to extend the intermediate representation and
experiment with different modeling methodologies. For instance, the
intermediate semantic representation can be derived from research
done in other related scientific characterizations of meaning, such as
WordNet, LSA, or topic models. Another direction is to experiment
with different modeling methodologies, such as neural networks
which model non-linear functions or generative models of neural
activities from a fully probabilistic, Bayesian perspective.
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