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Abstract and Keywords

This chapter reviews progress made by brain-reading (neurosemantic) studies that use 
multivariate analytic methods to delineate the nature, content, and neuroanatomical 
distribution of the neural representation of concept knowledge in semantic memory. 
Concept knowledge underlies almost all human thought, communication, and daily 
activity. The chapter describes how neurosemantic research has provided initial answers 
to such prominent questions as: What types of information are encoded in a given neural 
concept representation? To what extent are neural concept representations common 
across different people? Do neural concept representations evoked by pictures differ from 
those evoked by language? How are abstract versus concrete concepts represented in the 
brain? How does the neural representation of a concept evolve while a new concept is 
being learned? What are the properties and implications of the data analytic techniques 
that are used in this research area? The initial answers to these questions illuminate how 
the properties of brain organization impose a structure on the neural representations of 
concepts.

Keywords: neural representation, concept representation, concept, semantic memory, fMRI, MVPA, machine 
learning

Introduction
A key goal of cognitive neuroscience is to delineate the nature, content, and 
neuroanatomical distribution of the neural representation of concept knowledge, which 
underlies human thought, communication, and daily activities, from small talk about well-
worn topics to the learning of quantum physics. Accordingly, research that identifies the 
neural systems that underlie different categories of concept knowledge (e.g., concepts of 
animals, tools, and numbers) has made significant advances, particularly research on 
object concepts (see Martin, 2007). Earlier methods that investigated the neural 
representation of concept knowledge included the study of deficits in concept knowledge 
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in brain-damaged patients, as well as univariate analyses of activation in the healthy 
brain using functional magnetic resonance imaging (fMRI).

More recent neuroimaging research is uncovering the fine-grained spatial patterns of 
brain activation (e.g., multi-voxel patterns) evoked by individual concepts. These brain-
reading or neurosemantic studies have generally shown that the spatial pattern of 
activation that is the neural signature of the concept is distributed across multiple brain 
regions, where the regions are presumed to encode or otherwise process different 
aspects of a concept. Conventional linear model-based univariate analyses of activation 
levels (e.g., statistical parametric mapping in fMRI; Friston et al., 1994), which do not 
take account of multi-voxel patterns, have typically detected only a small number of brain 
areas involved in concept representation. Although the idea of multivariate pattern 
analysis of activation data is not new (Cox & Savoy, 2003), neurosemantic methods have 
enabled a paradigm shift in studying how concepts are neurally represented.

This chapter summarizes some key research findings that have characterized where and 
how different types of concept knowledge are represented in the brain. The focus of this 
chapter is on studies of the neural representations of concepts, rather than on (p. 520) the 
brain regions that support and mediate semantic processing (see Binder, Desai, Graves, & 
Conant, 2009, for a meta-analytic review of the neural systems that underlie semantic 
processing; for other approaches, see, in this volume, Musz & Thompson-Schill, Chapter 

22, and Garcea & Mahon, Chapter 23). Because most of the neuroimaging research 
reviewed here used blood oxygenation level-dependent (BOLD) fMRI (see Heim & Specht, 
Chapter 4 in this volume), brain activation henceforth refers to data collected using fMRI 
unless stated otherwise (e.g., magnetoencephalography, or MEG; see Salmelin, Kujala, & 
Liljeström, Chapter 6 in this volume).

The majority of this chapter details how neurosemantic research has illuminated various 
prominent questions in ways that build on the results of conventional data analytic 
methods. Some of these questions are the following: Do neural concept representations 
evoked by pictures differ from those evoked by words? What types of information are 
encoded in a given neural concept representation? To what extent are neural 
representations common across different people? What are the differences between the 
neural representations of abstract versus concrete concepts? The chapter includes a brief 
survey of the neurosemantic methods that are used to anatomically localize and 
characterize the kinds of information that are neurally represented.

The chapter ends by summarizing the results of neurosemantic studies that characterize 
the changes in neural concept representations during the learning of new concepts, a 
topic that has received little attention. The findings from these studies provide a 
foundation for cognitive neuroscience to trace how a new concept makes its way from the 
words and pictures used to teach it, to a neural representation of that concept in a 
learner’s brain. Monitoring the growth of a new neural concept representation has the 
potential for further illuminating how concepts are stored and processed in the brain.
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The Spatially Distributed Nature of a Neural 
Concept Representation
Human beings are capable of thinking about a vast number of concepts at various levels 
of abstraction. This variety of ideas and abstractions is reflected in everyday vocabulary 
and technical terminology (although not all concepts are necessarily expressible in 
language). One approach to characterizing concepts in terms of semantically related 
words is to construct a lexical database, as the authors of WordNet have done. WordNet 
is an English lexical database in which nouns, verbs, adjectives, and adverbs are grouped 
into sets of synonyms, where each set constitutes a distinct individual concept. It is a 
semantic network that consists of 117,659 concepts, each of which is connected to other 
concepts through a chain of semantic relations (WordNet 3.1, http://
wordnet.princeton.edu). WordNet was originally created to be consistent with 
hierarchical propositional theories of semantic memory, which postulate that concepts 
are organized hierarchically from general to specific concepts (e.g., Collins & Quillian, 
1972). The most (p. 521) common type of semantic connection between words is the 
hierarchical “is-a” relation. The concept chair, for example, is related to furniture by an 
“is-a” connection. As indicated in WordNet, concepts that human beings can think about 
range from thoughts of physical objects, such as organisms and geological formations, to 
abstractions, such as psychological states and mathematical entities.

The ability to study how this range of concepts is represented neurally has only recently 
become possible since the development of data analytic methods that can detect a 
correspondence between a distributed brain activation pattern and an individual concept. 
Neurosemantic research initially focused on only a small fraction of this range of 
concepts, namely animate and inanimate object concepts such as animals, faces, and 
tools and other manmade objects (e.g., Haxby et al., 2001; Mitchell et al., 2003; for an 
account of early neurosemantic research, see Haxby, 2012). These choices of concept 
categories were motivated by previous clinical studies of object category-specific agnosia, 
and also by univariate analysis-based neuroimaging findings that elaborated on the 
clinical results. Clinical studies found that relatively selective cortical damage was 
associated with a disproportionate deficit in concept knowledge for one of a small set of 
categories (e.g., animals or tools; for a review of the clinical literature, see Capitani, 
Laiacona, Mahon, & Caramazza, 2003). This body of work suggested that concept 
categories were subserved by only a few brain regions. However, mapping large brain 
areas to single-concept categories does not provide an account of neural concept 
representations that scales to the huge number of concepts that must be represented. A 
more efficient scheme that can accommodate vast numbers of concepts would be a 
pattern-encoding scheme, such that the neural representation of a concept corresponds 
to a spatial pattern of activation of many individual voxels, each displaying a level of 
activation that is characteristic of the concept. Early neurosemantic research provided 
the empirical basis for pattern encoding by indicating that concept knowledge might be 
represented in neural populations distributed over a large number of brain areas.
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Figure 21.1.  Neural concept representations are 
distributed throughout the brain. In Huth et al. 
(2012), 1,705 individual object and action concepts 
that appeared in movies were each found to be 
represented over multiple brain areas. Indicated by 
the three types of ellipses are the major brain areas 
associated with some of the superordinate categories 
of these object and action concepts. Auditory sensory 
cortex in the temporal lobe and a frontal language 
area were associated with communication; 
postcentral gyrus (sensation and movement) and 
occipitotemporal cortex (visual) were associated with 
biological entities; and parietal (spatial) and occipital 
areas were associated with buildings and shelter.

Source: The figure corresponds to one participant’s 
inflated brain, and was extracted from http://
gallantlab.org/semanticmovies.

Since the early fMRI research on concrete object concepts, neurosemantic research has 
replicated the finding that neural concept representations span multiple brain regions, 
and has revealed the activation patterns associated with other types of concept 
knowledge, such as emotions (Baucom, Wedell, Wang, Blitzer, & Shinkareva, 2012; 
Kassam, Markey, Cherkassky, Loewenstein, & Just, 2013), numbers (Damarla & Just, 2013;
Eger et al., 2009), personality traits (Hassabis et al., 2013), and social interactions (Just 
Cherkassky, Buchweitz, Keller, & Mitchell, 2014). In one study, close to 2,000 individual 
object and action concepts were each localized to multiple brain areas (Huth, Nishimoto, 
Vu, & Gallant, 2012). Figure 21.1 shows that the neural representations of these object 
and action concepts each reside in multiple areas distributed throughout the brain. The 
figure contains color-coded mappings between various concepts and their 
representations in various areas. For example, concepts related to communication (cyan) 
were found to be represented in auditory sensory cortex in the temporal lobe and a 
frontal area that includes Broca’s area, a canonical language region.

The main theoretical interpretation regarding spatially distributed neural representations 
is that the multiple brain areas that conjointly represent a given concept (p. 522)

correspond to the brain systems that are involved in the physical and mental interaction 
with the concepts’ referents. For example, the concept of a knife entails what it looks like, 
what it is used for, how one holds and wields it, and so on, resulting in a neural 
representation distributed over sensory, perceptual, motor, and association areas.

These findings from 
multivariate analyses build 
on and are consistent with 
past univariate analysis-
based research. For 
example, nouns that refer 
to physically manipulable 
objects such as a knife 
have been shown to 
activate left premotor 
cortex in right-handers 
(Lewis, 2006). In addition 
to left premotor cortex, 
activation has been 
observed in additional 
regions but at lower 
magnitudes, a result that 
hinted at the greater 
spatial distribution of 
concept knowledge in the 
brain (Chao, Weisberg, & 
Martin, 2002).
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In behavioral cognitive science, a concept is often treated as a mental representation that 
specifies some of the dimensions of a real-world phenomenon (e.g., visual or tactile 
properties of an object), in addition to the relations among those dimensions (see 

Barsalou, 1992, for a discussion of the nature of concept representation). Consistent with 
this approach is the finding that multiple brain regions, which encode different 
dimensions, collectively contain the information about a single concept. For example, the 
concept cat might include dimensions of cats that are common across different (p. 523)

breeds, such as general body shape, locomotion, diet, temperament, and so on. These 
properties should be detectable in the brain activation pattern associated with the 
concept cat. Several studies have used regression models to predict the activation pattern 
of a given object concept, based on how different voxels are tuned to various dimensions 
of objects and on how important those dimensions are to defining a given object concept. 
Accurate predictions have been made using properties of objects generated by human 
participants (Chang, Mitchell, & Just, 2011) or extracted from text corpora such as web-
based articles (Mitchell et al., 2008; Pereira, Botvinick, & Detre, 2013). In addition, an 
MEG study that used properties generated by participants predicted the spatial pattern of 
evoked magnetic fields associated with an object concept (Sudre et al., 2012).

The discussion here has assumed that sensorimotor systems in the brain store or 
otherwise process information that is integral to the comprehension of a concept, 
particularly object concepts. In this view, the representations of some concepts entail 
body-object interaction information; that is, they are embodied representations (Barsalou, 
Santos, Simmons, & Wilson, 2008). Some alternative theories hold that the brain 
activation observed in sensorimotor regions reflects imagery or simulated motion that 
occurs only after conceptual processing, and that fundamental concept meaning is 
encoded only in association areas such as the anterior medial temporal lobe (for a review 
of the competing theories, see Mahon & Caramazza, 2008; Meteyard, Cuadrado, Bahrami, 
& Vigliocco, 2010; and Kiefer & Pulvermüller, 2012). However, several studies using 
words referring to concrete objects have shown that sensorimotor activity evoked by the 
words occurs too early to originate from imagery explicitly generated by the participants 
(e.g., Kiefer, Sim, Herrnberger, Grothe, & Hoenig, 2008; see also Martin, 2007), providing 
some evidence for the embodied view of the representations of certain concepts.

Characterizing the Semantic Dimensions That 
Underlie Neural Concept Representations
A central objective of neurosemantic research is to determine some of the main semantic 
dimensions that underlie the neural representation of a given concept. This objective can 
be reached by reducing an activation pattern’s dimensionality (often consisting of the 
activation levels of tens to hundreds of voxels) to determine the main factors underlying 
the representation. For example, in a study of emotions (e.g., anger, disgust, envy, fear, 
happiness, lust, pride, sadness, and shame), factor analysis of the activation data 
indicated that each emotion was represented with respect to four underlying dimensions: 
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valence, arousal, sociality, and lust (Kassam et al., 2013). Each of these dimensions was 
further localized to plausible networks of brain regions. Arousal, for example, was 
localized to basal ganglia and precentral gyrus, which have previously (p. 524) been 
implicated in action preparation. The sociality dimension (which was not previously 
recognized as a core dimension of emotions) was traced to anterior and posterior 
cingulate cortex, two default mode network regions previously shown to be involved in 
social cognition. Although most of the dimensions were traced to brain areas previously 
implicated by univariate analysis-based research, it is notable that this single 
neurosemantic study uncovered results comparable to the results of multiple 
conventional neuroimaging studies.

A similar analysis of the activation patterns evoked by 60 object concepts identified three 
key dimensions: manipulation (e.g., tools and other manipulable objects), eating (e.g., 
vegetables, kitchen utensils), and shelter (e.g., dwellings, vehicles) (Just, Cherkassky, 
Aryal, & Mitchell 2010). Manipulation was associated with left postcentral/supramarginal 
gyrus and left inferior temporal gyrus, which have previously been implicated in the 
processing of tool concepts (Lewis, 2006). The eating dimension was traced to left inferior 
temporal gyrus and left inferior frontal gyrus, which revealed a link between 
representations of tool concepts (namely kitchen utensils) and representations of face- 
and jaw-related actions (Hauk, Johnsrude, & Pulvermüller, 2004). Finally, the shelter
dimension was traced to bilateral parahippocampal gyrus and bilateral precuneus. The 
parahippocampal gyrus is well known to activate in response to information about 
dwellings and scenes (e.g., Epstein & Kanwisher, 1998), and the precuneus areas were 
anatomically close to retrosplenial cortex, which is thought to be involved in the 
comprehension of a scene within a larger environment (for a review on retrosplenial 
cortex, see Vann, Aggleton, & Maguire, 2009).

One study greatly expanded the range of concepts whose neural representations were 
uncovered by collecting activation data as participants watched several hours of movies 
(Huth et al., 2012). The investigators used WordNet to label 1,364 common objects 
(nouns) and actions (verbs) that appeared in the movies, and an additional 341 
superordinate categories were inferred using the hierarchical relationships in WordNet 
(e.g., canine and mammal were added if wolf was an object that appeared in a movie). 
Data reduction yielded four dimensions that were interpretable: mobility/animacy, 
sociality (e.g., words about people and communication), civilization (e.g., people, man-
made objects, vehicles), and biological entities. Interestingly, these dimensions partially 
overlap with the dimensions revealed by the two other neurosemantic studies that 
separately investigated object and emotion concepts (described earlier). Thus, different 
studies using different methodologies appear to be converging on a common set of 
underlying neural dimensions of representation.
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Integration among a Concept’s Semantic Dimensions

A central aspect of a concept is how the different semantic dimensions relate to each 
other. Although some of the underlying dimensions of certain types of concept knowledge 
are being identified, much less is known about the relations among the dimensions. For 
example, some of the key dimensions of concrete objects appear to be manipulation, 
eating, and shelter. Is a neural representation of an object concept then anything (p. 525)

more than the sum of the representations of the concept’s individual dimensions? For 
example, would there be some indication in a neural representation that a gingerbread 
house is fundamentally different from a cafeteria building, even though both involve 
information related to eating and shelter? It is unclear whether relations among the 
dimensions of a concept are represented in brain areas that are spatially distinct from the 
locations of the individual dimensions (e.g., convergence zones; Damasio, 1989), or 
whether relational information is somehow encoded in a distributed way across the set of 
areas that also represent the individual dimensions.

A multivariate analysis of the activation in a visual perception task investigated which 
brain areas encode the conjunction of separate dimensions (Seymour, Clifford, 
Logothetis, & Bartels, 2009). The dimensions that were combined were the color and 
direction of motion of a set of dots, which were either green or red and rotated either 
clockwise or counterclockwise. The specific conjunction of color and direction of motion 
of a given item was found to be represented in multiple areas of early visual cortex that 
also encode the individual dimensions, indicating that these areas contain both a 
representation of the individual dimensions and the relation between the dimensions. 
This integration of information might be a critical aspect of the representation of a 
cohesive percept.

On the other hand, there is also evidence that the relations among a concept’s component 
dimensions are represented exclusively within specific high-order brain areas or 
convergence zones. An anterior temporal lobe region has been suggested as a site of 
dimension integration because it is innervated by different sensory modalities, and 
because abnormal functioning of this region is associated with impairments to semantic 
processing, but not to the performance of non-semantic cognitive tasks (Pobric, Jefferies, 
& Ralph, 2007; Patterson, Nestor, & Rogers, 2007). Coutanche and Thompson-Schill 
(2014) demonstrated that the conjunction of an object’s dimensions was encoded in a 
multi-voxel pattern in anterior temporal lobe, but not in the areas that separately 
represent the individual dimensions. Specifically, the depicted objects were fruits and 
vegetables, and the dimensions were color and shape (whose representations were 
investigated in fusiform gyrus and occipitotemporal cortex, respectively). Furthermore, 
the representation of the conjunction was detectable by the investigators only when each 
dimension’s representation could be detected, strengthening the evidence for the 
conclusion that the anterior temporal region represents the integration of individual 
components.
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Thus the evidence is mixed as to whether the integration of information about separate 
dimensions is represented in high-order brain regions versus in the network of areas that 
underlie the individual dimensions. It is also possible that integrated information is 
encoded in both representational formats.

Neurosemantic Methodology
Neurosemantic data analyses attempt to detect multi-voxel patterns of brain activation 
that correspond to the thoughts of concepts. One virtue of this approach is that it adheres 
to the fundamental principle that thinking is a network function involving (p. 526) multiple 
brain systems, including thinking about a concept. A second advantage of this approach is 
that it bestows a greater sensitivity for discovering the underlying phenomenon, by virtue 
of concurrently assessing the activations of many voxels with similar activation patterns 
for the stimuli at hand, regardless of the voxels’ proximity to each other. One 
phenomenon whose discovery has benefited from this greater sensitivity is the 
representation of different concepts that are in the same superordinate semantic 
category. The greater sensitivity of multi-voxel analysis enables researchers to distinguish 
between the activation patterns of such concepts (e.g., distinguishing between different 
animal concepts such as a primate and bird; Connolly et al., 2012); that is, the newer 
methods can compare patterns of activation between individual concepts in spatially 
distributed voxels. With the use of neurosemantic methods, a finding of various related 
concepts eliciting unique yet similar activation patterns over a set of brain areas 
constitutes suggestive evidence that those brain areas store or otherwise process the 
meanings of the concepts.

By contrast, conventional univariate analyses often report the magnitudes of activation of 
individual voxels that are averaged over a region of interest, requiring spatial proximity 
among the voxels that are grouped together (see Poldrack, 2007). Univariate analysis is 
sometimes not sensitive enough to distinguish between similar experimental conditions 
because the mean activation level of a set of voxels is often equivalent between similar 
conditions. Univariate analysis is useful for identifying the brain areas that are involved in 
the processing of some class of concepts, by determining whether an area’s activation 
level is elevated. Figure 21.2 depicts a hypothetical scenario in which the greater 
sensitivity of multivariate analysis enables distinguishing between two similar conditions, 
whereas univariate analysis finds no difference between the conditions but establishes for 
each condition an elevation in mean activation level (for a detailed comparison of the 
methods, see O’Toole et al., 2007, and Mur, Bandettini, & Kriegeskorte, 2009). Of course, 
“sensitivity” is assessed with respect to the phenomenon of interest, and there are 
doubtless phenomena other than multi-voxel activation patterns corresponding to 
concepts for which univariate analyses may be more sensitive (Coutanche, 2013; Davis et 
al., 2014).

One commonly used technique in neurosemantic studies is discriminative multivariate 
pattern classification analysis (MVPA). A classifier is an algorithm that is trained to 
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Figure 21.2.  Comparison of univariate and 
multivariate data analysis. A hypothetical scenario in 
which multivariate analysis (right) reveals that the 
multi-voxel pattern of activation levels in left primary 
auditory cortex differs between two animal concepts 
(i.e., two animals that make similar sounds). 
Univariate analysis (left) shows that the level of 
activation averaged over the set of voxels is the same 
between the two concepts, but establishes an 
elevation in mean activation for both concepts.

associate an activation pattern with each of the stimuli (or classes of stimuli) and is 
subsequently reiteratively tested (using a procedure called cross-validation) on an 
independent data set (for a tutorial, see Pereira, Mitchell, & Botvinick, 2009, and 

Norman, Polyn, Detre, & Haxby, 2006). Logistic regression is an example of a 
discriminative classifier. The main strength of MVPA is its concurrent consideration of the 
activations of multiple voxels, regardless of their relative locations in the brain. MVPA has 
been used to discover neural representations of various types of information, such as 
covert intentions in prefrontal cortex (Haynes et al., 2007), visual imagery of simple 
shapes in occipitotemporal cortex (Stokes, Thompson, Cusack, & Duncan, 2009), and 
episodic memories in the hippocampus (Chadwick et al., 2010). The accuracy of the 
classification is a measure of the discriminability of the stimuli (or classes of stimuli), 
sometimes (p. 527) computed as the rank accuracy, or the normalized percentile rank of a 
correct stimulus in the classifier’s ranked output (Mitchell et al., 2004). Here, chance 
level is a normalized rank accuracy of 0.5, where the correct classification response 
occupies the middle rank among all possible responses. The obtained accuracy can then 
be compared to a distribution of accuracies that would be obtained by chance (typically 
obtained by Monte Carlo simulations).
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Methods That Assess the Semantic Content of Neural 
Representations

Importantly, what is neurally represented is not just the meaning of a concept, but also 
the perceptual form of the word or picture that refers to the concept. The perceptual 
form is represented in primary and secondary sensory brain regions. Thus, simply 
obtaining accurate classification of an activation pattern does not ensure that the pattern 
encodes concept meaning. To substantiate that a given activation pattern corresponds to 
the meaning of a concept, it is sometimes useful to show that the set of correlations 
among the activation patterns bears a clear relation to behavioral judgments of similarity 

(p. 528) among the concepts. A statistically reliable correlation between the two sets of 
inter-item similarities would provide converging evidence that concept meaning underlies 
the systematic differences in the activation data. Another way to ensure that an MVPA is 
identifying the representation of a concept—and not the representation of the picture or 
word that evokes it—is to exclude sensory and early perceptual area voxels from the 
analysis.

Although discriminative classifiers are extremely useful for associating brain areas with 
stimuli, they do not easily lend themselves to predictive or generative modeling, as a 
generative classifier can do. A generative classifier is useful if there is a need to predict 
the activation that will be evoked by a new stimulus. The central property of a generative 
classifier is its postulation of a set of intermediate variables between the stimulus and 
activation that modulate the activation as a function of the properties of the stimulus. The 
classic method for predictive modeling is regression, which can be used to predict the 
activation of a yet unseen stimulus, based on how its properties modulated the activation 
of the stimuli on which the model was trained. Predictive regression models can provide 
converging evidence for the neural representation of concept meaning in terms of the 
postulated semantic dimensions that underpin the neural representation of a concept. A 
model is first estimated of how a set of voxels is tuned to different dimensions (e.g., the 
size or animacy of an object). A prediction is then made of a concept’s activation pattern 
based on the weighted importance of the dimensions in the representation of that 
concept. The generalizability of the model can be assessed by testing the predicted 
activation pattern of any concept that is definable by the dimensions included in the 
model (Naselaris, Kay, Nishimoto, & Gallant, 2011). As mentioned previously, it is 
possible to accurately predict an object concept’s activation pattern using properties of 
objects generated by human participants (Chang et al., 2011; Sudre et al., 2012). This 
approach has also been used to investigate how different voxels in visual brain areas are 
tuned to different visual features (Kay, Naselaris, Prenger, & Gallant, 2008). The general 
goal of this approach is to relate concept properties to one or more areas of activation.

Another methodology that can help characterize the neural representation of a concept is 
representational similarity analysis (RSA), which assesses the neural similarity between 
all pairs of items and relates the resulting similarity structure to the activation patterns 
(see Musz & Thompson-Schill, Chapter 22 in this volume). Some researchers use the idea 
of an n-dimensional representational space, in which the distance between a given pair of 
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Figure 21.3.  Representational similarity structures 
in different brain areas reveal differences in the 
types of information neurally represented therein. 
Shown for two different brain areas are the 
dissimilarities between all pairs of biological 
concepts’ activation patterns, and the hierarchical 
structure that emerges from these dissimilarities. 
The representational dissimilarity between any two 
concepts was computed as 1 – the correlation 
between their activation patterns. (A) Lateral 
occipital complex (LOC), a high-order visual brain 
area that here represents information corresponding 
to species category. (B) Early visual cortex (EV), a 
collection of brain areas that process low-level visual 
features, which seems to encode visual properties of 
the concepts that do not correlate with species 
category.

Source: The figure was adapted with permission 
from Connolly et al. (2012).

concepts approximates the degree of similarity between the concepts’ activation patterns. 
If the multi-voxel activation pattern for two concepts is known, then the similarity (or 
distance) between them can be computed and the full set of inter-item distances can be 
used to specify the space. In this approach, the set of inter-concept distances can reveal 
the kinds of information that underlie the representations (see Kriegeskorte, Mur, & 
Bandettini, 2008, for a tutorial on RSA). For example, Figure 21.3 shows the similarity 
structure of six biological species concepts, corresponding to two different brain areas. 
The similarity structure of the concepts differs between the two areas, indicating that the 
information that is encoded or otherwise processed differs between the areas. The 
information represented in occipitotemporal cortex is organized (p. 529) with respect to 
species category, given that the neural dissimilarity is lowest between the two primates, 
between the two birds, and between the two insects. On the other hand, the information 
in early visual cortex seems to encode visual properties of the concepts that do not 
correlate with species category. In this way, representational similarity structures have 
the potential to reveal the underlying dimensions along which concepts are organized in 
the brain.

The capacity of RSA to 
reveal the semantic 
content encoded in neural 
representations depends in 
part on the measures of 
dissimilarity between a 
pair of vectors of 
activation levels, such as 
correlational measures 
(e.g., 1—the Pearson 
correlation between multi-
voxel activation patterns), 
or geometric distances 
(e.g., Euclidean or 
Mahalanobis distance). 
Another type of measure of 
neural dissimilarity is the 
classification accuracy in a 
classifier’s confusion 
matrix. A comparison of 
these dissimilarity 

measures for RSA has revealed that continuous distances (i.e., correlation and geometric 
distances) produce more reliable results than classification accuracies, largely because 
classification accuracies are obtained from binary decisions that discard continuous 
dissimilarity information (Walther et al., 2016). Furthermore, dissimilarity measures that 
are cross-validated across subsets of activation data provide an interpretable zero point 
against noise.
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Apart from RSA, other data-driven, exploratory methods are used to characterize the 
informational content contained in neural representations. To identify key underlying 
dimensions from a large set of voxels spanning multiple brain regions, dimension 
reduction techniques, such as principal or independent components analysis or factor 
analysis, are useful (see Heim & Specht, Chapter 4 in this volume). These dimension 
reduction methods can separate the activation patterns into smaller sets of voxels (which 

(p. 530) maximize the amount of total or shared variance explained in the data), where 
each set is associated with one or more of the dimensions (e.g., Just et al., 2010; Kassam 
et al., 2013). If some of the voxels associated with one of the dimensions are localized 
primarily in the motor cortex, for example, then it is likely that motor action constitutes 
part of the semantic content of that dimension.

Even with the use of advanced neurosemantic methods, caution may be needed in 
concluding that the activation pattern in a set of brain regions represents the meaning of 
a particular concept because of the notorious difficulty in distinguishing representation 
from process (Anderson, 1978). It is sometimes difficult to distinguish whether an 
activation pattern corresponds to where and how information is stored, versus 
corresponding to the processes that operate on the representation. Measurement of a 
neural concept representation requires evoking an activation pattern, thus potentially 
conflating representation and process; for example, the content of a neural concept 
representation might be a facet of processing related to selective attention. Selective 
attention has been shown to change the tuning characteristics of occipitotemporal and 
frontoparietal cortex for the objects shown in a movie (Çukur, Nishimoto, Huth, & 
Gallant, 2013). A way to address this type of difficulty might be to test whether 
characteristics of the activation patterns vary as a function of the nature of the task that 
the participants perform. It will be useful for future research to characterize neural 
concept representations in a way that takes into account the nature of the processing that 
evokes that concept, for example in sentence comprehension (Poeppel, 2012), story 
comprehension (Wehbe et al., 2014), and problem-solving (Anderson & Fincham, 2014).

Methods of Evoking a Neural Concept Representation

Various methods have been used to evoke the brain activation that underlies a concept. 
They vary with respect to three characteristics: (1) the amount of time allotted for a 
participant to process and think about a concept; (2) the nature of the task that the 
participant is asked to perform; and (3) the modality of the stimulus used to evoke a 
concept.

Each method of evoking a concept has its own profile of advantages and disadvantages; 
for example, allotting more time to think about a concept can yield more robust signal in 
the activation data and thus greater classification accuracy. However, if there is no 
instruction to think about a concept in a certain way, greater thinking time may result in 
variation in the activation across the repetitions of a concept, due to the different ways in 
which a participant may think about a concept. Furthermore, an instruction to think 
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about a concept in a particular way or context may induce an unrepresentative 
instantiation of the concept (e.g., thinking about dog as a participant in a race).

A study in which the participants were presented the same emotion concepts under 
different task instructions provided evidence of the commonality of the neural 
representation across two very different task conditions (Kassam et al., 2013). In one 
condition, participants were presented with emotion words (such as “anger”) and were 
instructed to evoke thoughts and feelings associated with each emotion. In a different 
condition, (p. 531) participants passively viewed pictures that evoked disgust. A classifier 
that was trained on the activation evoked by the emotion words (which included 
“disgust”) was then able to identify the disgust evoked by the pictures with good 
accuracy. This finding provided evidence that, at least in this case, the brain activation 
patterns corresponding to disgust in these two very different conditions were fairly 
similar to each other. It would be useful to see many other concept representations 
compared, under many different conditions, to determine which facets of a neural 
representation are always activated and which are modulated by the nature of the 
evoking task.

Influences of Language on Neural Concept 
Representations
One task effect of long-standing interest involves the difference in the content of a neural 
concept representation depending on whether the evoking stimulus is a word versus a 
picture. For example, is a picture of a screwdriver more likely than the word 
“screwdriver” to evoke a specific, potentially unrepresentative instantiation of the 
concept screwdriver, especially if the picture is richly detailed? A resolution of this issue 
would provide a theoretical framework to account for the results of numerous studies that 
use words, pictures, movies, or other stimuli to evoke a concept.

A neurosemantic study uncovered suggestive evidence that the central aspects of a 
neural concept representation are to a large extent independent of the stimulus used to 
evoke the concept (Shinkareva, Malave, Mason, Mitchell, & Just, 2011). In this study, it 
was possible to classify the activation pattern of an object concept cued by the noun 
naming the object with a classifier trained on the activation pattern of the same concept 
evoked by a simple line drawing, and vice versa. Specifically, the classifier determined 
whether a given object concept referred to a tool or dwelling. Although this study 
assessed only a small number of items from only two categories, it is suggestive of a 
common core neural representation that is evoked regardless of the stimulus modality.

In Shinkareva et al. (2011), it was possible to classify the words or pictures using 
activation from the language system (left inferior frontal gyrus) and also from 
sensorimotor brain regions. These results are consistent with the Language and Situated 
Simulation theory of semantic processing (akin to the embodied cognition approach), 
which holds that a concept activates both the language system and the same 
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sensorimotor regions that are active during actual interaction with the concepts’ 
referents (Barsalou et al., 2008; Simmons, Hamann, Harenski, Hu, & Barsalou, 2008).

Despite there being a shared core of the neural representation between pictures and 
words referring to a concept, there is evidence of differences in the neural concept 
representations. A possible asymmetry between pictures and words is that pictures evoke 
not only a concept’s core meaning, but also some detailed instantiation of the concept as 
it is depicted in a picture. A picture generally contains a greater amount of information 

(p. 532) about an object than does a word (e.g., the shape of a screwdriver’s handle and 
its tip). Words, on the other hand, tend to evoke only the most generic properties of a 
concept. In the study of the cross-stimulus modality classification described earlier 
(Shinkareva et al., 2011), the classification accuracy was higher when the classifier was 
trained on word-cued activation and tested on pictures, versus when it was trained on 
pictures and tested on words. This result suggests that although the neural 
representations of words and pictures are similar to each other, pictures activate 
additional information that is specific to the picture. The classifier that was trained on 
pictures and tested on words apparently extracted some information unique to the 
pictures, leading to a classification accuracy that was lower than when the classifier was 
trained on words and extracted generic information common to the picture and word 
representations.

In sum, there is evidence of overlap in the semantic content between word- and picture-
cued neural representations. However, additional research is needed to characterize the 
distinctions between the content of representations evoked by words versus pictures. Can 
identical representations be evoked between words and pictures by manipulating the 
information that is directly expressed in either presentation modality? For example, 
would the addition of modifiers to a word increase the amount of information about the 
evoked concept (e.g. “short, yellow Phillips screwdriver”)? Similarly, can the neural 
representation of a concept evoked by a picture be made more similar to the one evoked 
by a word by making the picture completely schematic, thereby removing the extra 
information conveyed by the picture? Empirical studies that address such issues would 
enable a refinement of theories of how concept knowledge is neurally stored and 
activated (e.g., dual-coding theory; Paivio, 1986).

Neural Representations of Lexical and Grammatical Categories

There has not yet been found a clear difference in activation patterns evoked by different 
word classes (e.g., verbs versus nouns). Studies that have addressed this question have 
been hampered by the problem that concepts corresponding to different grammatical 
categories are inherently different. For example, verbs are typically associated with 
concrete actions, whereas nouns typically refer to objects (see Vigliocco, Vinson, Druks, 
Barber, & Cappa, 2011, for a review of the brain activation underlying nouns and verbs). 
These grammatical categories also differ in terms of lexical stress and ortho-phonological 
typicality, which complicate matters further (Arciuli, McMahon, & de Zubicaray, 2012). 
Consequently, any differences in activation found between nouns and verbs might 
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plausibly be attributed to differences in semantic content, rather than to (non-semantic) 
differences in lexical category or grammatical structure. One study compared the 
activation evoked by abstract nouns and verbs (e.g., “idea” versus “think”) because 
abstract nouns and verbs are not associated with concrete objects or concrete actions 
and thus are not inherently different in the same way that concrete nouns and (p. 533)

verbs are (Moseley & Pulvermüller, 2014). This study found no activation location 
difference between abstract verbs and nouns, whereas there was a difference between 
concrete verbs and nouns. The authors concluded that there are no word class-specific 
processing centers in the brain. However, the analysis focused on only a small set of 
regions of interest; a whole-brain comparison was not conducted, thus leaving the 
question open to additional investigation.

Other studies have reported differences in the activation locations evoked by pseudo-
nouns versus pseudo-verbs (Shapiro et al., 2005). Pseudo-nouns (nonsense words with 
morphological cues to lexical category, such as ending in –age, cuing a noun) elicited 
greater activation than pseudo-verbs bilaterally in temporal regions, whereas pseudo-
verbs (e.g., those ending in –eve) evoked greater activity in left-lateralized frontal areas. 
In another study, pseudo-verbs (e.g., ending in –eve) elicited greater activity in motor 
cortex than pseudo-nouns (de Zubicaray, Arciuli, & McMahon, 2013). Such differential 
activation evoked by stimuli that are devoid of meaning suggests that a word’s lexical 
class is a possible dimension of lexical organization in the brain.

In a study using multivariate analysis, it was possible to distinguish between the 
activation patterns associated with semantically equivalent but grammatically different 
sentences (Allen, Pereira, Botvinick, & Goldberg, 2012). Specifically, a classifier could 
determine whether a sentence was ditransitive (e.g., “Mike brought a book to Chris”) or 
dative (e.g., “Mike brought Chris a book”), despite the fact that the two grammatical 
constructions convey the same core information. The classifier used activation from left-
lateralized brain areas involved in language processing, such as left inferior frontal gyrus. 
The result suggests that grammatical category is neurally represented independent of 
semantic meaning, but further research is needed that identifies the grammatical aspects 
of ditransitive and dative sentences that might be neurally represented. At the same time, 
it remains unclear whether grammatically different sentences with the same core 
meaning still have subtle differences in semantic content that can be detected in 
activation patterns.

If nouns and verbs tend to evoke differing semantic content (i.e., object- and action-
related content, respectively), then some neurosemantic theories would posit that this 
content is primarily represented in association areas that integrate among different 
sensorimotor modalities, such as the anterior medial temporal lobe or angular gyrus (e.g.,
Patterson et al., 2007; for a review of these and other theories, see Mahon & Caramazza, 
2008; Meteyard et al., 2010; and Kiefer & Pulvermüller, 2012). In support of this view, 
abnormal functioning of these brain regions is associated with impairments to semantic 
processing, but not to the performance of non-semantic cognitive tasks (e.g., Pobric et al., 
2007). Because many of the activation differences observed between nouns and verbs are 
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not constrained to these association areas, these theories might predict that activation 
differences between lexical categories could instead reflect non-conceptual linguistic 
processing. For example, greater activity observed in motor cortex in response to verbs 
versus nouns could reflect verb-specific ortho-phonological properties (de Zubicaray et 
al., 2013). However, there is also reason to believe that sensorimotor activation elicited 
by words instantiates the concepts to which the words refer, which may (p. 534) constitute 
a form of semantic processing (Mahon & Caramazza, 2008). Thus, additional research 
that demarcates the semantic system in the brain may provide some answers regarding 
which brain areas underlie syntactic processing.

Finally, another prominent question addressed by the neurosemantic approach is whether 
neural concept representations differ between different languages, assuming that the 
words or phrases are good translation equivalents of each other. There is suggestive 
evidence that the neural representation of a concept is largely the same, regardless of 
which language is used to evoke it. In two neurosemantic studies of bilinguals, it was 
possible to identify the activation pattern associated with an object concept cued in one 
language based on the activation pattern of the same concept denoted in another 
language (Buchweitz, Shinkareva, Mason, Mitchell, & Just, 2012; Correia et al., 2014). 
However, there are subtle clues that neural representations of word classes differ 
between speakers of different languages due to differences in the semantic content 
associated with the classes. For example, the most frequently used class of verbs in 
Spanish refers to the path of an object (see Goldstone & Kersten, 2003), whereas English 
verbs often refer to the manner of an object’s motion. Thus, neural concept 
representations might differ between the two languages in this respect, despite a core 
commonality in the representations.

Commonality of Neural Concept 
Representations across Different Individuals
One of the most dramatic findings in neurosemantics is that the fine-grained activation 
pattern corresponding to a given concept is largely common across people. When two 
people think about the concept apple, their activation patterns are distributed over the 
same brain locations and are very similar. When a classifier is trained on the activation 
patterns from a set of participants (whose activation data were spatially aligned to a 
common anatomical template), it can reliably predict which concept a left-out test 
participant is contemplating. This phenomenon of commonality has been demonstrated 
for the neural representations of concrete objects (Just et al., 2010), emotions (Kassam et 
al., 2013), numbers (Damarla & Just, 2013), and social interactions (Just et al., 2014).

The ability to accurately classify concepts across people suggests that some of the same 
properties of a given concept are evoked in many or most individuals. Behavioral studies 
in which participants generate properties of objects report that there are some properties 
that are commonly associated with a given object concept (e.g., Cree & McRae, 2003; 
Nelson, McEvoy, & Schreiber, 1998). Moreover, a neurosemantic study uncovered 
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suggestive evidence that the most defining properties of a concept are automatically 
activated during any instance of evoking that concept, even during tasks for which that 
information is irrelevant (Hsu, Schlichting, & Thompson-Schill, 2014).

(p. 535) Accurate cross-individual classification is somewhat surprising given the 
uniqueness and variety of personal experiences and associations that might underlie a 
concept, in addition to the varied levels of experience with a concept. Although the 
commonality of neural representations of concepts has been demonstrated, the unique 
aspects of neural representations have yet to be characterized. The unique components 
could be similar in kind to the common aspects (which constitute semantic memory), or 
they could be tagged in some way as part of one’s autobiographical memory (Charest, 
Kievit, Schmitz, Deca, & Kriegeskorte, 2014). It will be interesting to determine the 
characteristics of concept knowledge that are unique, although to do so will be 
challenging precisely because any emerging pattern of results will be difficult to 
aggregate over participants. If successful, such research may enable an understanding of 
how different properties of a neural representation, such as its particular pattern of 
activity or its anatomical distribution, are shaped by individual factors (e.g., unique 
experience, genetic predisposition) versus shared, cross-individual factors (e.g., cultural 
values, evolutionarily conserved biases toward processing certain types of information, 
and inherent neural constraints; Sadtler et al., 2014). Representational commonality 
might indicate that there exist category-specific brain networks that process specific 
kinds of information that are important to survival, such as information about food or 
shelter (Mahon & Caramazza, 2003).

Methods That Assess Representational Commonality by Abstracting 
Away from Person-Specific Patterns of Neural Activity

There is another approach that makes it possible to compare neural representations 
across people, namely cross-individual comparison of the similarity relations among the 
concepts’ activation patterns (Raizada & Connolly, 2012). This approach uses RSA 
(described earlier) to abstract the activation data away from voxel space (i.e., activation 
patterns corresponding to different brain locations) to representational similarity space 
(i.e., correlations among the activation patterns). Thus, the method does not need to warp 
different participants’ activations to a common anatomical template. Classification is not 
performed directly on the activation patterns. Rather, the classifier determines whether 
the similarity relations among the concepts’ activation patterns are similar across 
individuals. Cross-individual classification in representational similarity space may 
produce greater classification accuracy because the method does not need to account for 
individual differences in brain anatomy. Thus, although there may be slight differences in 
the precise brain locations of two participants’ representations of the same concept, the 
neural similarity between the two representations is robust to these differences.

Another cross-individual classification method is the mapping of each individual’s 
activation data from original voxel space to a common, high-dimensional space over 

(p. 536) all the participants (Haxby et al., 2011; Haxby, Connolly, & Guntupalli, 2014). The 
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dimensions in this new common space are not individual voxels, but rather distinct 
response-tuning functions defined by their commonality across the different brains. This 
method also results in greater cross-individual classification accuracy.

Yet another cross-individual classification method encodes both activation location and 
magnitude in a graph structure and is robust to anatomical differences among people 
(Takerkart, Auzias, Thirion, & Ralaivola, 2014). Thus, the warping of activation data to 
align with a common anatomical template might lead to an underestimation of the 
commonality of the semantic content in neural representations.

Intriguingly, one study that used RSA assessed commonality of neural representations 
between human beings and macaque monkeys (Kriegeskorte, Mur, Ruff, et al., 2008; 
Kriegeskorte, 2009). This study indicated that pictures of various animate and inanimate 
objects elicited activity patterns that had similar representational similarity between the 
humans and monkeys in homologous inferotemporal cortex, a set of high-order visual 
brain areas. The human data consisted of fMRI activation, and the monkey data were 
single-neuron electrophysiological recordings from two macaque monkeys (Kiani, Esteky, 
Mirpour, & Tanaka, 2007). The commonality between the neural representations 
belonging to the two species is illustrated in Figure 21.4. To the extent that the 
inferotemporal activation reflected semantic processing rather than perceptual 
processing of the picture stimuli themselves, this result may bear on the profound 
question of the nature of thought in other species. The result also motivates future 
research that uses similar methods to compare neural representations between humans 
and monkeys within other brain areas, and for other concept categories such as numbers 
(e.g., Beran, Johnson-Pynn, & Ready, 2011).

Neural Representations of Abstract and 
Concrete Concepts
Previous behavioral research suggests that how a concept is stored and otherwise 
processed depends on how concrete or abstract it is. For example, words that refer to 
concrete concepts (e.g., “ball”) are more quickly recognized (e.g., Schwanenflugel & 
Harnishfeger, 1988), and knowledge of concrete concepts is more resistant to brain 
damage (see Coltheart, Patterson, & Marshall, 1980). Several fMRI studies have shown 
that words that refer to either abstract concepts (e.g., “blame”) or concrete concepts 
activate overlapping but partially distinct brain networks, with abstract concepts eliciting 
greater activation in the frontal language system (e.g., Binder, Westbury, McKiernan, 
Possing, & Medler, 2005; Friederici, Opitz, & von Cramon, 2000; Noppeney & Price, 
2004). In several studies, abstract words were defined as those with low imageability and 
concreteness ratings, and vice versa for the concrete words. The overlapping portion of 
activation between the two word classes consisted of left-lateralized areas that (p. 537)

receive inputs from multiple sensory modalities, such as angular gyrus. In one of the 
studies, concrete concepts, in contrast to abstract concepts, elicited greater activation in 
right-lateralized multimodal areas (Binder et al., 2005). Abstract concepts produced 
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Figure 21.4.  Neural representations of concrete 
objects are similar between monkeys and humans. 
Arrangements of the same picture stimuli separately 
for monkeys and humans, such that the distance 
between any two pictures reflects the dissimilarity 
between their activity patterns (1 – the spatial 
correlation) in IT (inferotemporal cortex), a set of 
high-order visual brain areas.

Monkey data: 674 single-neuron electrophysiological 
recordings from two macaque monkeys (Kiani et al., 
2007). Human data: fMRI activation in 316 voxels (Kr
iegeskorte, Mur, Ruff, et al., 2008). Different 
categories: face (red), body (magenta), natural object 
(blue), artificial object (cyan). The lines connect the 
same pictures between monkey and human; thick 
lines indicate that the neural representations were 
dissimilar between monkey and human.

Source: The figure was adapted from Kriegeskorte 
(2009) freely under the terms of the Creative 
Commons Attribution License.

greater activation primarily in left inferior frontal gyrus, an important area in the 
language system. Thus, the findings from these univariate analysis-based studies suggest 
that abstract (versus concrete) concepts evoke other verbal concepts and involve less 
sensorimotor knowledge than concrete concepts.

The only multivariate 
analysis-based study to 
date that compares the 
neural representations 
between abstract and 
concrete concepts 
documented findings 
similar (p. 538) to those of 
the univariate analysis-
based studies (Wang, 
Baucom, & Shinkareva, 
2013). For example, left 
inferior frontal gyrus was 
among a small set of 
regions that by itself 
enabled a classifier to 
recognize the activation 
patterns corresponding to 
abstract concepts. Taken 
together, the results in this 
research area support the 
dual-coding theory of 
semantic processing 
(Paivio, 1986), which 
postulates that abstract 
concepts are neurally 
represented primarily as 
lexical items, whereas 
concrete concepts are 

additionally stored as sensorimotor representations.

The findings of left inferior gyrus involvement in the representation of abstract concepts 
leave open the question of what type of information is represented there. Apart from its 
critical role in language processing, this region has been associated with phonological 
working memory (Burton, 2001), and so activation patterns detected in this region might 
contain sustained phonological representations of words, while knowledge related to the 
word meaning is being retrieved from other brain locations. Left inferior frontal gyrus has 
also been suggested to mediate conflicts in the retrieval of knowledge among competing 
alternatives (Thompson-Schill, D’Esposito, & Kan, 1999). Thus, activation detected in this 
region might reflect various instances of mediation among competing requests for the 
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retrieval of knowledge related to the concept currently being thought about. According to 
either interpretation, activation patterns in this region would not appear to encode the 
knowledge per se associated with a concept.

The evidence uncovered thus far suggests that an abstract concept evokes a set of verbal 
or lexical representations associated with that concept, more so than does a concrete 
concept. This lexical information might also include concrete words, whose meaning is 
neurally represented in sensorimotor brain areas. Regression models might be used to 
discover sensorimotor activation patterns associated with abstract concepts by 
accounting for any hidden concrete factors that underpin the representations.

Scientific concepts are a specific type of abstract concept learned only through formal 
education. The neural signatures of scientific abstract physics concepts (e.g., gravity, 
torque, frequency) can be decomposed into meaningful underlying neural and semantic 
dimensions, despite their abstractness. Mason and Just (2016) used factor analysis to 
uncover the underlying dimensions of the neural representation of 30 physics concepts. 
The four main dimensions underlying the neural representation of these abstract 
concepts were causality, periodicity, algebraic representation (a sentence-like statement 
of the quantitative relations among concepts), and energy flow, all of which are 
dimensions that are used for representing familiar concrete concepts. For example, a 
concept like frequency has a strong periodicity component. (The brain locations 
corresponding to this factor included bilateral superior parietal gyrus, left postcentral 
sulcus, left posterior superior frontal gyrus, and bilateral inferior temporal gyrus.) The 
applicability of these underlying dimensions was assessed in terms of a classification 
model that used the factor-related brain locations to accurately classify the 30 abstract 
concepts based on their neural signature. The findings suggest that abstract scientific 
concepts are represented by repurposing neural structures that originally evolved for 
more general purposes. The underlying brain capabilities that form the basis for physics 
concepts existed long before physics knowledge was developed.

(p. 539) Changes in Neural Concept 
Representations with Learning
The ability to track the growth of a neural concept representation speaks to one of the 
foundational goals of cognitive neuroscience research, namely to understand the neural 
basis of knowledge acquisition. The study of concept learning also promises to enable a 
greater understanding of how concept knowledge is represented and processed in the 
brain. However, little is known about the changes that occur in a neural concept 
representation as a new concept is being learned.

Much of the existing research on concept learning has focused on changes in which brain 
regions show heightened activation between pre- and post-learning. For example, after a 
session of learning how to manipulate novel tool-like objects, activation to pictures of the 
objects was found to shift predominantly to motor cortex compared to pre-learning 
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(Weisberg, van Turennout, & Martin, 2007). Another study showed that after participants 
were verbally instructed about the kind of motion or sound that was associated with novel 
living objects, the activation elicited by the object pictures was localized to motion-
specific or auditory cortex (James & Gauthier, 2003). These studies showed that the brain 
regions that became active after learning corresponded to the kinds of information that 
were taught. However, the univariate analyses used in these studies did not permit a 
determination of how each individual new concept became encoded in a distributed 
neural representation within the new sites of activation.

A multivariate study of concept learning documented the emergence of the neural 
representations of individual new concepts (Bauer & Just, 2015). Specifically, the growth 
of the representations of new animal concepts was monitored as two properties of each 
animal were taught, namely an animal’s habitat and its diet or eating habits. The learning 
of information about each of these dimensions was demonstrated by an increase in the 
accuracy of classifying the animal identities based on the brain areas associated with the 
dimension that had been learned. For example, after participants had learned about the 
habitats of some animals, it was possible to classify which animal they were thinking 
about by training a classifier on the activation patterns in regions associated with shelter 
information. This study provides a novel form of causal evidence that newly acquired 
knowledge comes to reside in the brain regions previously shown to underlie a particular 
type of concept knowledge.

Another neurosemantic study examined the changes in the neural representations of 
complex mechanical concepts as they were being learned, and found that different stages 
of learning are associated with different sets of brain regions that encode the emerging 
knowledge (Mason & Just, 2015). Specifically, the study demonstrated how incremental 
instruction about the workings of several mechanical concepts (e.g., bathroom scale, 
automobile braking system) gradually changed the neural representations of the systems. 
The representations progressed through different states that reflected different learning 
stages, starting with the visual properties of (p. 540) the concept encoded from the 
display, mental animation of mechanical components, generation of causal hypotheses 
associated with the animation, and determination of how a person would interact with the 
mechanical system. Research on intermediate stages of learning has lagged behind 
studies that focus only on final outcomes of learning (Karuza, Emberson, & Aslin, 2014). 
The results in Mason and Just (2015) raise the possibility that the neural representations 
of familiar concepts (which is the only type of concept that most previous studies have 
investigated) may fail to reveal the constructive processes by which the neural 
representations become established. The constructive processes may reveal some 
fundamental properties of neural concept representations.

The neurosemantic research on concept learning provides a foundation for brain research 
to trace how new knowledge makes its way from the words and graphics used to teach it, 
to a neural concept representation in a learner’s brain. It might foreshadow an era in 
which brain imaging and neurosemantic methods are used to diagnose which aspects of a 
concept a student misunderstands or lacks, in a way that might be more fundamental and 
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accurate than conventional behavioral testing. An fMRI study in which real-time 
measurement of brain activation identified mental states that were either “prepared” or 
“unprepared” for encoding a new stimulus lends credence to this possibility (Yoo et al., 
2012).

The study of how the learning process changes neural concept representations promises 
to enable a greater understanding of the kinds of information encoded in neural 
representations. Just as neurosemantic methods have been useful in determining where 
and how the different dimensions of a concept are encoded, these methods might 
eventually be used to track the developmental trajectory of neural representations as a 
function of various factors of interest, such as a person’s previous experience or 
knowledge, or elapsed time between learning episodes. Perhaps a comparison of 
representations at different stages of knowledge expertise would aid in deciphering the 
kinds of information that are encoded in the representations. For example, chess experts 
can remember large configurations of chess pieces on a board by representing various 
relationships among the chess pieces (Gobet & Simon, 1996). Comparisons between the 
information that is neurally encoded in a domain expert versus a novice might illuminate 
the process of building complex neural representations.

Conclusion
Neurosemantic methods have enabled enormous advances in uncovering how various 
types of concept knowledge are neurally represented, and also in characterizing the 
information contained in the representations. The ability to study how different concepts 
are neurally represented has only recently become possible since the development of data 
analytic methods that can detect a correspondence between a distributed activation 
pattern and an individual concept. The key virtues of the (p. 541) neurosemantic approach 
over older methods are that it generally permits greater sensitivity to uncovering the 
underlying phenomenon, and it adheres to the fundamental principle that concept 
information is encoded in neural populations distributed throughout the brain. The 
approach promises to illuminate a number of prominent questions; for example, the field 
is better equipped to determine whether abstract concepts are neurally encoded as 
lexical representations, or whether abstract thoughts are underpinned by sensorimotor 
factors as revealed by organized patterns of activation in these brain regions. The 
neurosemantic paradigm provides the tools for forging discoveries in areas of daunting 
complexity, such as how the relations among a concept’s underlying semantic dimensions 
are neurally encoded and thereby represent a cohesive concept, and how learning 
establishes and shapes new representations.
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