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ABSTRACT 
 

The advent of brain reading techniques has enabled new approaches to the study of concept 
representation, based on the analysis of multivoxel activation patterns evoked by the 
contemplation of individual concepts such as animal concepts. The present fMRI study 
characterized the representation of 30 animal concepts. Dimensionality reduction of the 
multivoxel activation patterns underlying the individual animal concepts indicated that the 
semantic building blocks of the brain’s representations of the animals corresponded to intrinsic 
animal properties (e.g. fierceness, intelligence, size). These findings were compared to behavioral 
studies of concept representation, which have typically collected pairwise similarity ratings 
between two concepts (e.g. Henley, 1969). Behavioral similarity judgments, by contrast, indicated 
that the animals were organized into taxonomically defined groups (e.g. canine, feline, equine). The 
difference in the results between the brain reading and behavioral approaches might derive from 
differences in cognitive processing during judging similarities versus contemplating one animal at 
a time. Brain reading approaches may have an advantage in describing thoughts about an 
individual concept, owing to the ability to decode brain activation patterns elicited by the brief 
consideration of a single concept (e.g. word reading) without a complex cognitive or behavioral 
task (e.g. similarity judgments). On the other hand, some behavioral tasks may tend to evoke a 
concept from numerous perspectives, yielding a representation of the breadth and sophistication 
of the concept knowledge. These results suggest that neural and behavioral measures offer 
complementary perspectives that together characterize the content and structure of concept 
representations. 
 

 

1.  Introduction 

The advent of brain reading techniques has enabled new 
approaches to the study of concept representation, based on 
analysis of the fine-grained brain activation patterns evoked by 
the contemplation of different concepts (O’Toole et al., 2007; 
Mitchell et al., 2008; Huth et al., 2016). Research on knowledge 
of objects and other concepts has traditionally employed 
methods that collect behavioral responses, such as dissimilarity 
ratings between pairs of objects or lists of their properties 
(Murphy, 2004). Brain reading research has added to the body 
of behavioral work in characterizing the knowledge of a range of 
concepts, including concrete objects such as animals and tools 
(e.g. Henley, 1969; Ruts et al., 2004; Just et al., 2010) and abstract 
entities such as emotions and academic physics concepts 
(Baucom et al., 2012; Kassam et al., 2013; Mason & Just, 2016). 

Moreover, the two approaches have been shown to yield 
convergent results regarding some of the content of the concepts 
(e.g. Weber et al., 2009; Connolly et al., 2012; Connolly et al., 
2016). Thus a major focus of neurosemantic research has been 
to provide an additional level of analysis that strengthens the 
behavioral evidence regarding some of the content of the 
representation of different concepts. 

Although previous research has described a similarity 
between brain reading and behavioral methods, the question of 
how concept representations might differ between the 
paradigms has received less attention. An even greater 
understanding of concept representation may be enabled by an 
assessment of the unique perspective afforded by brain reading 
methods (Barsalou, 2017). Semantic cognition refers to several 
fundamental facets of concept knowledge, including the breadth 
and organization of the knowledge stored in long-term memory, 
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and also the representation of individual concepts and the 
content evoked during their on-line retrieval (Lambon Ralph, 
2014). Brain reading approaches may be particularly well suited 
for illuminating the nature of the representation of individual 
concepts, owing to their ability to decode patterns of neural 
activity elicited by the consideration of a concept in the absence 
of a complex task, such as pairwise dissimilarity judgments 
(Bauer & Just, in press). Moreover, rich patterns of activation can 
be evoked by brief periods of consideration of a concept (e.g. 1 
to 3 seconds or less). Brain reading methods can minimize the 
scope of a concept’s evoked representation, reducing semantic 
processing that might otherwise arise from spreading activation 
(Anderson, 1983) or explicit consideration of other concepts. 
These attributes of neural measures of concept representation 
thus grant brain reading approaches high construct validity in 
interrogating the semantic basis for thinking about individual 
concepts.  

Studies of the neural representation of individual concepts 
have enjoyed much success in revealing the kinds of properties 
or semantic dimensions underlying a concept’s evoked 
representation. For example, data reduction techniques such as 
factor analysis have revealed the principal dimensions 
underlying concepts of emotions, such as valence and lust 
(Kassam et al., 2013). fMRI and MEG studies have also used 
regression models to predict the spatially distributed activation 
patterns of object concepts, based on some of the objects’ 
properties extracted from text corpora (Mitchell et al., 2008; 
Pereira et al., 2013) or generated by human participants (Chang 
et al., 2011; Sudre et al., 2012). Thus, neural measures of concept 
representation suggest that the basis for thinking about 
individual concepts corresponds to thoughts about some of the 
fundamental properties of a concept. 

Previous research has revealed that concept 
representations are encoded by spatially diverse neuronal 
populations across multiple lobes of the brain (Huth et al., 2016; 
Bauer & Just, in press). There are several theories regarding the 
neural representation of concepts, one of which is that a concept 
is encoded in spatially distributed, modality-specific areas that 
are specialized to process a concept’s sensorimotor and affective 
properties (Kiefer & Pulvermüller, 2012). A related theory, 
called the “hub-and-spoke” theory, further posits that a 
centralized hub integrates a concept’s anatomically distributed 
representations of its properties (Patterson et al., 2007). A major 
commonality to these theories is that a concept’s properties are 
neurally represented across different brain systems. 

On the other hand, behavioral research has delineated 
both the various properties of concepts and also the structural 
form of domains of concepts. For example, multidimensional 
scaling techniques have been used to reveal some of the 
fundamental properties of concepts about odors, colors, and 
concrete objects such as animals (Henley, 1969; Berglund et al., 
1972; Indow & Aoki, 1983; Shepard & Cooper, 1992). Behavioral 
measures have also been used to reveal the structural or 
organizational form that underlies the knowledge of a domain of 
concepts. For example, although lists of properties generated for 
individual animals have been reduced to a low-dimensional 
space defined by some of the animals’ intrinsic properties, these 
same data are better modeled as a hierarchical tree structure 
that groups the animals into increasingly specific taxonomic 
groups (e.g. rodents and mammals, primates and rodents) 
(Kemp & Tenenbaum, 2008). Behavioral measures may 
therefore describe the breadth and structural form of concept 
knowledge stored in long-term memory, which subsumes the 
concepts’ more fundamental properties. This may derive from 

the fact that many behavioral studies collect a large amount of 
responses. For example, studies that collect lists of properties of 
concepts have tended to instruct participants to thoroughly 
consider each concept (e.g. 10 properties listed per concept, Ruts 
et al., 2004). Moreover, in studies that collect dissimilarity 
ratings, each concept might be judged against a large number of 
other concepts, thereby evoking a concept from numerous 
perspectives (Henley, 1969). 

Research that directly compares neural and behavioral 
measures of representations of the same concepts could thus 
lead to a greater understanding that distinguishes between on-
line retrieval of individual concepts and the long-term, 
comprehensive knowledge of the concepts. This was the goal of 
the current fMRI study, which compared the neural 
representations of 30 animal concepts to pairwise dissimilarity 
ratings of the same animals collected in a previous behavioral 
study (Henley, 1969). Schematic depictions of the two tasks are 
shown in Figure 1. The behavioral data consisted of 29 
dissimilarity ratings per animal, and the neural representations 
corresponded to the multivoxel activation patterns evoked by 
the participants’ limited consideration of each individual animal. 
Spatial patterns of activation composed of individual voxels are 
thought to reflect neural population codes and thus to indicate 
representational content (Mur et al., 2009).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Schematics of the tasks performed in the (A) fMRI 
and (B) behavioral task. The representations of the same 30 
animals evoked by the two tasks were compared. In the fMRI 
task, the participants thought about several properties of each 
individual animal. In the behavioral task, the participants rated 
the dissimilarity between each pair of animals, yielding 29 
ratings per animal. 

 
The approach taken here was to consider a distribution of 

brain areas that collectively contain the information about the 
animal concepts, consistent with previous research showing that 
concept representations are spatially distributed. Some studies 
have employed a searchlight procedure to locate small clusters 
of contiguous voxels whose activation patterns resemble 
behavioral dissimilarity ratings (Connolly et al., 2012; Connolly 
et al., 2016). While using for interrogating the representational 
content of regional clusters, the searchlight procedure cannot 
assess information encoded in a distributed network of brain 
areas (Haynes, 2015). The approach taken here was to better 
capture the totality of the spatially distributed neural 
representations without focusing the analysis only on regional 
activation that resembles the dissimilarity ratings. This 
approach enables an unbiased characterization of the neural 
representations to compare to the behavioral data. 

Ever since the development of multidimensional scaling 
and clustering techniques, which model the structure of 

 



 

3 
 

similarity data, concept representations have traditionally been 
explored using behavioral similarity judgments (Borg & 
Groenen, 1997; Ruts et al., 2004). Only more recently have 
alternative similarity measures been employed, such as those 
based on statistical regularities between words in large text 
corpora. The current study therefore sought to illuminate how 
brain reading studies may offer a unique perspective on concept 
representation that complements the conclusions drawn from 
behavioral similarity ratings, which constitute the main source 
of information of how concepts are represented. 

The current study compared both the content and the 
structural form of the animal representations evoked by the 
fMRI and dissimilarity rating paradigms. The 29 dissimilarity 
ratings per animal were hypothesized to implicitly encode a 
large number of properties of the animals, which should overlap 
with the more limited content expected in the individual 
animals’ neural representations. Thus some degree of 
commonality was expected in the evoked content (Hypothesis 
1), which was assessed using representational similarity 
analysis. This analysis enables relating together different 
measures of a putatively identical phenomenon by mapping the 
datasets to the same abstract space of inter-stimulus similarities 
which can then be compared (Shepard & Chipman, 1970; 
Kriegeskorte et al., 2008). 

The structural form underlying the individual animals’ 
neural representations was hypothesized to correspond to a 
low-dimensional space defined by intrinsic properties of the 
animals (Hypothesis 2A). This hypothesis draws from the 
multidimensional scaling analysis of the dissimilarity ratings 
originally reported in Henley (1969), which showed that the 
animal concept knowledge could be modeled by 3-dimensional 
space defined by the animals’ size, fierceness, and intelligence. An 
exploratory factor analysis of the fMRI activation patterns was 
predicted to recover these three dimensions in addition to other 
intrinsic properties. Consistent with previous research on 
concept representation in the brain, the neural representations 
of the animal properties were predicted to correspond to 
activation patterns distributed across different sensory, motor, 
and affective areas. For example, the representation of the 
property fierceness might plausibly extend to areas underlying 
affective processing such as orbitofrontal cortex, as suggested by 
previous research that examined animal concept 
representations in the brain (Connolly et al., 2016). 

On the other hand, a re-analysis of the ratings data from 
Henley (1969) was hypothesized to indicate a more complex 
underlying structure, specifically a partitioning of the animals 
into taxonomic groups (Hypothesis 2B). This hypothesis is 
consistent with more recent demonstrations of a taxonomic 
basis to lists of properties generated for various animals (Kemp 
& Tenenbaum, 2008). A factor analysis that requests several 
additional components should yield factors that divide the 
animals into taxonomic groups (e.g. a feline factor on which only 
members of the feline taxonomic family have high factor 
loadings). Furthermore, a clustering analysis should yield 
taxonomic groups that resemble a scientific taxonomic 
classification of the animals. 
 
2.  Material and methods 
 
2.1.  Participants 

 
Twelve right-handed adults (four males, eight females; 

mean age of 23.9 years, ranging from 20 to 35) from Carnegie 
Mellon University and the Pittsburgh community participated 

and gave written informed consent approved by the Carnegie 
Mellon Institutional Review Board. Three additional 
participants’ data were discarded due to falling asleep, and four 
other participants’ data were excluded because of excessive 
head motion (greater than half the size of a voxel: 1.5mm total 
displacement in the x or y dimensions or 3mm in the z 
dimension). Four additional participants’ data were discarded 
due to chance-level accuracy in multivoxel pattern classification 
of the animal concepts (classification features were the 120 most 
“stable” voxels selected from anywhere in the brain excluding 
the occipital lobe; more detail concerning classification is 
provided in section 2.4.4). This classification, which differed 
from the classification that tested the hypotheses, was used to 
check for systematicity in a participant’s activation patterns 
regardless of its correspondence to the hypotheses. 

 
2.2  Experimental paradigm and task 
 

The stimuli in the fMRI task were 30 words each of which 
was the name of an animal, as shown in Table I. The 30 animals 
were the same 30 animals used in the previous behavioral study 
that collected pairwise dissimilarity ratings (Henley, 1969). 
During scanning, the 30 words were presented six times in six 
different random permutation orders (two permutation orders 
were presented during each of three scans). Each word was 
presented for 3s, followed by a 5s rest period, during which the 
participants were instructed to clear their minds and fixate on 
an “X” displayed in the center of the screen. There were nine total 
presentations of an “X” alone in the center of the screen, 24s 
each, distributed evenly throughout the three scans to provide a 
baseline measure for calculating percent signal change in the 
fMRI signal. 

When a word was presented, the participants’ task was to 
actively imagine and think about the properties of the animal to 
which the word referred. To promote their consideration of a 
consistent set of properties across the six presentations of an 
animal, the participants were asked to generate a set of three 
properties for each animal prior to the scanning session (for 
example, some properties generated for squirrel were “is small 
and nimble, eats nuts, climbs trees”). The participants were 
instructed to list the properties that came immediately to mind 
for each animal. Each participant was free to choose any 
properties for a given animal, and there was no attempt to 
impose consistency across participants in the choice of 
properties.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table I. The 30 stimulus words (animal names) 
used in both the fMRI and behavioral tasks 

 

Antelope Donkey Mouse 

Bear Elephant Pig 

Beaver Fox Rabbit 

Camel Giraffe Raccoon 

Cat Goat Rat 

Chimpanzee Gorilla Sheep 

Chipmunk Horse Squirrel 

Cow Leopard Tiger 

Deer Lion Wolf 

Dog Monkey Zebra 
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2.3.  fMRI scanning parameters and data preprocessing 
 
Functional blood oxygen level-dependent (BOLD) images 

were acquired on a 3T Siemens Verio Scanner and 32-channel 
phased-array head coil (Siemens Medical Solutions, Erlangen, 
Germany) at the Scientific Imaging and Brain Research Center of 
Carnegie Mellon University using a gradient echo EPI sequence 
with TR = 1000ms, TE = 25ms, and a 60° flip angle. Twenty 5mm-
thick AC-PC-aligned slices were imaged with a gap of 1mm 
between slices, in an interleaved spatial order starting at the 
bottom. The acquisition matrix was 64 x 64 with 3.125 x 3.125 x 
5mm in-plane resolution. 

Data preprocessing was performed with the Statistical 
Parametric Mapping software (SPM8, Wellcome Department of 
Cognitive Neurology, London, UK). Images were corrected for 
slice acquisition timing, motion, and linear trend; temporally 
smoothed with a high-pass filter using a 190s cutoff; and 
normalized to the Montreal Neurological Institute (MNI) 
template without changing voxel size (3.125 × 3.125 × 6mm). 

The percent signal change relative to the baseline 
condition was computed at each gray matter voxel for each 
stimulus presentation, using SPM8. The main input measure for 
the subsequent analyses consisted of the mean of the four brain 
images acquired within a 4s window, offset 5s from the stimulus 
onset (to account for the delay in hemodynamic response). The 
intensities of the voxels in this mean image for each stimulus 
presentation were then normalized (mean = 0, SD = 1). 

 
2.4.  Data analysis 
 
2.4.1.  Overview 

Representational similarity analysis was used to assess the 
commonality of the content encoded in the animal 
representations evoked by the brain reading task and behavioral 
dissimilarity judgements. Additionally, each dataset from these 
two tasks was separately submitted to exploratory factor 
analysis and clustering analysis to ascertain its underlying 
structural form. 

 
2.4.2.  Assessing the representational similarity between 
the brain activation patterns and dissimilarity ratings 

 
To compare the two datasets, the fMRI activation patterns 

(described in section 2.4.3) were first converted into a vector of 
pairwise neural dissimilarities, and then correlated with the 
vector of pairwise dissimilarity ratings. (The activation data 
used for the representational similarity analysis corresponded 
to the same 255 stable voxels submitted to the factor analysis.) 
First, the vector of the pairwise neural dissimilarities was 
formed by computing the correlation distance (i.e. 1 – the 
Pearson correlation) between the activation patterns of each 
pair of animals, averaged across the six presentations of each 
animal. (Correlation distance has been shown to provide better 
accounts than other dissimilarity metrics, such as Euclidean 
distance; see Kriegeskorte et al., 2008.) This resulted in a vector 
of correlation distances, or dissimilarities, for the 435 possible 
pairs of animals. This vector of neural dissimilarities, averaged 
across participants, was then correlated with the vector of 
behavioral dissimilarities, which yielded an index of the 
commonality of the information carried in the two datasets. 

 
2.4.3.  Factor analysis of the brain activation patterns 

The brain activation associated with the 30 animal 
concepts was factored into different components shared across 

participants using a two-level exploratory factor analysis, as 
described in previous studies (e.g. Just et al., 2010). The factor 
analysis was based on principal axis factoring with varimax 
rotation, implemented in MATLAB 7 (Mathworks, MA) using the 
same algorithm as the SAS factor procedure (www.sas.com).  

The goal of the first-level factor analysis was to find the 
participant-specific distributed brain networks involved in the 
representation of the animal concepts. The first-level factor 
analysis was performed separately for each participant, 
resulting in 10 first-level factors. (The number of first-level 
factors was fixed at 10, which was the modal number of factors 
for all participants based on the Kaiser criterion.) These factors 
were characterized by their vector of scores for the 30 animals 
and their associations with specific subsets of an initially 
selected set of 255 voxels. These voxels had the most “stable” 
activation profiles; the stability of a voxel was computed as the 
average pairwise correlation between its activation profiles 
(vector of its activation levels across the 30 animals) across the 
repetitions of the animals (Just et al., 2010). The choice of the 
particular number of voxels used as the input was motivated by 
similar analyses in previous studies (Just et al., 2010; Just et al., 
2014; Mason & Just, 2016). For each participant, the 255 most 
stable voxels were selected from five major brain areas, and the 
number of voxels selected from a brain area was proportional to 
that brain area’s size: frontal lobe (100 voxels), temporal lobe 
(45), fusiform gyrus (15), parietal lobe (55), and occipital lobe 
(40). (The selection of voxels from different brain areas was 
motivated by the assumption that a semantic factor would be 
composed of a large-scale cortical network with representation 
in multiple brain areas.) The fusiform area was separated from 
the other areas because of its prominence in previous studies of 
object representation. The voxels were assigned to anatomical 
areas using Anatomical Automatic Labeling (AAL) (Tzourio-
Mazoyer et al., 2002). Before the selection of stable voxels, 
occipital voxels were removed whose activation levels 
correlated with the character lengths of the stimulus words. 

A second-level factor analysis was then run to identify 
factors that were common across the participants. The number 
of factors in this group-level factor analysis was limited to 6, 
beyond which they were not easily interpretable. The group-
level factors were characterized by their vector of scores for the 
30 animals and their associations with specific subsets of the 
first-level factors, and, through these associations, to subsets of 
originally selected voxels. 

Note that a large number of voxels (255) was selected to 
better capture the majority of the activation data that jointly 
constitute the neural representation of the animal concepts. (A 
number of stable voxels close to 250 was selected such that the 
number of voxels chosen from a given major lobe was 
proportional to the size of that brain area, which resulted in a 
total of 255 voxels.) Also, the stable voxels were selected in 
proportion to each major brain area, rather than from anywhere 
in the brain, in order to prevent selection of voxels based solely 
on stability score. For example, because voxels from visual brain 
regions tend to have higher stability scores, a disproportionate 
number of occipital voxels would result from an agnostic 
selection criterion based only on stability. To compare the 
results to this agnostic selection method, 250, 500, and 1000 
stable voxels were selected from anywhere in the brain 
(excluding visual voxels that correlated with length of the word 
stimuli). Representational similarity analysis was used to assess 
whether the information in these additional sets of activation 
patterns were similar to the activation data submitted to the 
main analyses. 
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2.4.4.  Testing the interpretation of the factors underlying 
the neural representations 

The factors that emerged were initially interpreted by 
observing which animals had the highest and lowest factor 
scores for a given factor, and by observing the brain locations of 
the factors. As detailed in the results, the semantic labels initially 
assigned to the factors were tested by comparing the animals’ 
scores on a particular factor to two independent measures: 
independent behavioral ratings of the animals with respect to 
that factor, and the animal names’ co-occurrence with words 
that describe that factor in a large corpus of text (i.e. latent 
semantic analysis). 

Multivoxel pattern classification was also performed to 
determine whether an animal could be identified based on its 
activation pattern composed of the brain locations associated 
with the factors. Classification proceeded through three stages: 
algorithmic selection of a set of voxels (features) to be used for 
classification; training of a classifier on a subset of the data; and 
testing of the classifier on the remaining subset of the data. The 
training and testing used cross-validation procedures that 
iterated through all possible partitionings of the data into 
training and test sets, always keeping the training and test sets 
separate. The classification was performed with a support vector 
machines classifier that used 120 “stable” voxels (described 
above), where 20 of the most stable voxels were drawn from the 
clusters of voxels associated with each of the six factors. (Set 
sizes of 90 and 150 voxels, where 15 and 25 voxels were drawn 
from the clusters of voxels associated with each factor, resulted 
in similar classification accuracies, reported in section 3.2.2.) For 
each partitioning into training and test data, the voxel selection 
criterion was applied to the training set and the classifier was 
trained to associate an activation pattern to each of the 30 
animals. Four (out of the six) repetitions of each animal were 
used for training and the mean of the remaining two repetitions 
was used for testing, resulting in 15 total partitionings into 
training and test data. The activation values of the voxels were 
normalized (mean = 0, SD = 1) across all the animals, separately 
for the training and test sets, to correct for possible drift in the 
signal across the six repetitions. Classification rank accuracy 
(referred to as accuracy) was the percentile rank of the correct 
word in the classifier’s ranked output (Mitchell et al., 2004). 

 
2.4.5.  Factor analysis of the dissimilarity ratings 

A single-level factor analysis was performed on the mean 
dissimilarity ratings (across participants) in Henley (1969). 
(The data for the individual participants were not available.) The 
number of factors requested was set to 6, as in the factor analysis 
of the fMRI data. This number was greater than the three 
dimensions visualized in the original multidimensional scaling 
analysis in Henley (1969). 

In Henley (1969), 21 participants rated the dissimilarity 
between each pair of animals on a 0–10 scale, for a total 435 
pairs (all possible pairs of the 30 animals). The ratings were 
repeated in a second session in which the positions of the animal 
names presented in each pair were inverted, and the ratings 
from both sessions were averaged together. Three participants’ 
data with the greatest deviation from the sample had been 
removed and the remaining 18 participants’ data were averaged 
together. 

 
 
 
 

2.4.6.  Testing the interpretation of the factors underlying 
the dissimilarity ratings 

To test the hypothesis that the factors underlying the 
dissimilarity ratings correspond to taxonomic groups of animals 
(e.g. rodent), the groups of animals indicated in the factors were 
compared to a scientifically-defined taxonomic classification of 
the animals, as detailed in the results. K-means clustering of the 
dissimilarity ratings was used a data-driven method to separate 
the animals into the taxonomic groups suggested by the factors. 
The degree of agreement in the animals’ group assignments 
between the dissimilarity ratings and taxonomic classification 
was quantified using the Wallace coefficient of congruence 
(Wallace, 1983). This agreement was then statistically assessed 
against chance using the null hypothesis testing procedure in 
http://www.comparingpartitions.info (Pinto et al., 2008), as 
detailed in the results. 

 
3.  Results 
 
3.1.  Modest commonality in the content of the animal 
representations evoked by the fMRI and behavioral tasks 

 
There was some commonality in the content of the animal 

representations evoked by the two paradigms. The pairwise 
neural dissimilarities among the animal concepts (obtained by 
using representational similarity analysis) were modestly but 
statistically reliably correlated with the behavioral dissimilarity 
ratings:  r(433) = 0.12, p < 0.05. This finding of representational 
commonality across the two types of measures was expected 
(Hypothesis 1), although the representational formats of the 
animal concepts were hypothesized to differ. As detailed below, 
in the fMRI measure of thinking of the individual animals, the 
principal dimensions underlying their neural representations 
corresponded to intrinsic properties of the animals (e.g. size, 
intelligence, habitat). On the other hand, the factors underlying 
the pairwise dissimilarity ratings corresponded to taxonomic 
groups of the animals (e.g. rodent, feline, canine). 

 
3.2.  Neural representations of the animals, considered 
individually, were underpinned by intrinsic properties of 
the animals 

 
The six factors underlying the multivoxel brain activation 

patterns of the animal concepts corresponded to the animals’ 
fierceness (two factors), intelligence, habitat, farm-relatedness, 
and size. The factor analysis was performed across participants, 
which points to the generality of the findings. 

Figure 2 shows how the factor scores ordered the animals 
along each factor.  For example, for the first fierceness factor 
(factor 1), the highest scores occurred for bear and elephant and 
some of the lowest scores occurred for donkey, mouse, and sheep. 
Here fierceness seems to refer to an animal’s predacity or how 
threatening it is due to its size. The intelligence factor accorded 
its highest scores to chimpanzee and dog, and its lowest scores 
to mouse and beaver. Another factor appeared to reflect the 
degree of enclosure of habitat (e.g. den or burrow versus open 
field), and it assigned its highest scores to animals such as lion, 
beaver, and bear and some if its lowest scores to horse, antelope, 
and camel (animals that graze on open land). A fourth factor 
seemed to refer to another kind of fierceness, and it ranked wolf 
and fox highest and goat lowest. A fifth factor (farm-relatedness) 
favored many farm animals, assigning some of its highest scores 
to horse, cow, and goat. A sixth factor encoded size, according 
some of its highest scores to elephant, zebra, and giraffe, and its 
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lowest scores to squirrel and chipmunk. The percentage of 
variance accounted for by each of the six factors was fierceness: 
7.3; intelligence: 6.3; enclosure of habitat: 5.7; second kind of 
fierceness: 5.4; farm-relatedness: 5.0; and size: 4.9. 

Note that the results of the factor analysis are unlikely to 
have critically depended on the voxel selection method 
employed, namely the selection of voxels proportional to the size 
of each major brain area. Representational similarity analysis 
was used to assess whether the information encoded in the 
voxels submitted to the factor analysis was similar to the content 
encoded in 250, 500, and 1000 voxels selected from anywhere 
in the brain. The vector of pairwise neural dissimilarities 
(averaged across participants) computed from the voxels used 
in the main analyses was statistically reliably correlated with the 
dissimilarities computed from each set of voxels for comparison: 
r(433) = 0.18, p < 0.001 (compared to 250 voxels); r = 0.22, p < 
0.001 (500 voxels); and r = 0.20, p < 0.001 (1000 voxels). 

Since each animal had a score for each of the factors, an 
animal concept’s neural representation was a composition of 
these six factors. For example, mouse ranked high in enclosure of 
habitat and low in intelligence. The interpretations of the factors 
that are presented here are supported by the converging 
evidence below. 
 
3.2.1.  Brain areas associated with each factor 

Each of the six factors was associated with multiple brain 
locations, distributed across multiple lobes. The clusters of 
voxels associated with each factor (identified by their high factor 
loadings) are shown in Figure 3. The fierceness factor (factor 1) 
showed high factor loadings for a cluster of voxels located in left 
orbitofrontal cortex which has been implicated in affective 
evaluation (e.g. reward and punishment in decision making) 
(Montague & Berns, 2002; Mitchell, 2009). A cluster of voxels 
corresponding to the second fierceness factor (factor 4) was also 
located in this brain area, and there were additional clusters in 
medial prefrontal cortex and left temporoparietal junction, 
which have also been implicated in social cognition (e.g. 
reasoning about another’s beliefs or intent) (Samson et al., 2004; 
Mitchell, 2009). This network of regions implicated in social 
cognition has also been identified in a previous study that 
searched for multivoxel representations of an animal’s predacity 
(Connolly et al., 2016). Connolly et al. (2016) found activation 
related to animal fierceness in superior temporal sulcus and 
other social cognition areas, and conclude that perception of 
threat extends to thoughts about non-human animals. These 
previous findings, along with the ordering of the animals along 
these two factors, provide support for the fierceness 
interpretations of factors 1 and 4. 

The brain locations corresponding to intelligence (factor 2) 
were widely distributed in the brain. Among these locations 
were left inferior frontal gyrus and left middle temporal gyrus, 
which have been widely implicated in language (Price, 2010) 
and have been shown to underlie the representation of abstract 
concepts (e.g. dogma) more than concrete concepts (e.g. 
screwdriver) (Binder et al., 2005; Wang et al., 2010; Wang et al., 
2013). There were also clusters of voxels associated with 
intelligence in bilateral superior angular gyrus/intraparietal 
sulcus, a heteromodal hub thought to organize information from 
different modalities and thus to construct abstract concepts 
(Binder & Desai, 2011; Bonner et al., 2013). Thoughts about 
intelligent animals could plausibly be multifaceted or abstract, 
referring to their complex methods of communication or social 
interactions. 

The brain locations associated with enclosure of habitat 
(factor 3) notably included bilateral superior retrosplenial 
cortex/precuneus. These areas have been shown to activate to 
information about scenes and dwellings (Just et al., 2010; Bauer 
& Just, 2015), and are thought to be important for spatial 
navigation (Epstein & Higgins, 2007; Vann et al., 2009). Thus 
these areas could underlie thoughts about the spatial 
configuration or topography of an animal’s habitat. There were 
also clusters of voxels associated with this factor in medial 
prefrontal cortex. Previous research suggests that medial 
prefrontal cortex and precuneus, where activation was also 
observed for this factor, constitute a circuit that underlies 
perspective-taking and the representation of the self in relation 
to the external world (Gusnard & Raichle, 2001; Cavanna & 
Trimble, 2006). Thus, the presence of activation in these clusters 
may indicate that thoughts about an animal include taking the 
perspective of an animal in relation to its habitat. 

The factor farm-relatedness (factor 5) included clusters in 
bilateral inferior gyrus/precentral gyrus, in particular the 
mouth and face areas of the motor cortex. These areas have been 
shown to underlie food and eating concepts, for example 
concepts of vegetables and eating utensils, and concepts of 
mouth actions such as chewing (Hauk et al., 2004; Just et al., 
2010; Carota et al., 2012; Bauer & Just, 2015; Carota et al., 2017). 
The information represented in these areas might therefore 
refer to thoughts of consumption of farm animal meat or other 
farm animal products. 

Chief among the brain locations associated with size 
(factor 6) were bilateral parahippocampal gyrus, which has been 
implicated in the representation of object size (Konkle & Oliva, 
2012), and bilateral intraparietal sulcus, important to 
visuospatial working memory (Todd & Marois, 2004). 
Additional clusters of voxels associated with size were located in 
visual regions such as lateral occipital complex (namely bilateral 
middle and superior occipital gyrus). 

The attributions accorded to the brain locations (and 
hence factors) above are instances of reverse inference, which 
are complemented by the orderings of the animals along the 
factors. 
 
3.2.2.  Animal identification accuracy based on the factors 

It was possible to identify which animal concept a person 
was thinking about with accuracies above chance level by 
training a classifier on a subset of that person’s brain activation 
patterns (four out of six presentations) and then making the 
identification over an independent dataset (the mean of the 
remaining two presentations). The classification was performed 
using voxels drawn from the clusters of voxels discovered to 
underlie each of the six factors. The resulting mean classification 
rank accuracy (averaged across participants) was 0.74, with a 
range of 0.60 to 0.86. The accuracies for all the individual 
participants were above chance level, as determined by 
permutation testing (the p < 0.001 probability threshold for a 
rank accuracy being greater than chance level is 0.54). 
(Furthermore, set sizes of 90 and 150 voxels resulted in similar 
mean classification accuracies, namely 0.73 and 0.75.) 

The results of the classification analysis indicate that the 
pattern information represented in the brain locations 
associated with the factors systematically differed for the animal 
concepts. These results are expected if the uncovered factors 
correspond to different semantic dimensions of animal concepts 
that jointly define the animals.
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Figure 2. The factors underlying the neural representations of the animals corresponded to intrinsic 

properties of the animals. For each factor shown above, the 30 animals are arranged on a line according to their 

factor scores. In each factor there were two sets of animals with high face validity for the factor label: animals that 

had high factor scores (colored in blue) or low scores (red). For farm-relatedness (factor 5) only the animals with high 

factor scores could be interpreted as having high face validity for that factor. 
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Figure 3. The brain locations associated with each of the factors underlying the 
neural representations of the animals. In the fMRI measure of thinking of the 
individual animal concepts, the neural representations were underpinned by intrinsic 
properties of the animals. Shown above are the clusters of voxels associated with each 
of the factors that emerged from a cross-participant exploratory factor analysis, 
which is the union of the voxels from the individual participants found to correspond 
to the second-level factors. For factors 1–4, the voxels were clustered at a threshold 
of 10 voxels. For factors 5–6, the clustering threshold was set to 5 voxels, as these 
factors accounted for lower percentages of variance in the data. Rendering was 
performed on an MNI template brain using the 3D medical imaging software 
MRIcroGL (Rorden & Brett, 2000). 
L: left; MNI: Montreal Neurological Institute 

 
 
3.2.3.  Testing the interpretation of the factors using 
independent behavioral ratings on animal properties 

One test of the semantic labels assigned to the factors was 
obtained by comparing the factor scores to independent 
behavioral ratings of the animals according to different animal 
properties. A previous study collected ratings of animals with 
respect to four properties, namely intelligence, size, fierceness, 
and speed (Holyoak & Mah, 1981). Three of these properties 
resembled four of the six uncovered factors (intelligence, size, 
and the two factors for fierceness). In Holyoak & Mah (1981), 25 
participants rated the subjective magnitude of each property a 
9-point scale, for each of the animals (28 animals were common 
between Holyoak & Mah, 1981, and the present fMRI study). For 
each property, the ratings of the 28 animals in common were 
correlated with the corresponding factor scores derived from 
the brain activation patterns. The mean ratings (averaged over 
participants) were correlated with the corresponding factor 
scores as follows: intelligence: r(26) = 0.59, p < 0.001; size: r = 
0.69, p < 0.001; and fierceness (factor 1): r = 0.36, p = 0.06 
(marginally significant). The other factor for fierceness (factor 4) 
was not correlated with the ratings, suggesting that this factor 
has a more limited association with fierceness: (r = 0.24, p = 
0.23). The low correlations with the behavioral ratings of 
fierceness suggests that a constellation of animal properties 
related to an animal’s fierceness is represented in these two 
factors. 

3.2.4.  Testing the interpretation of the factors using latent 
semantic analysis 

Three of the six factors did not correspond to any of the 
rated properties in Holyoak & Mah (1981). These factors were 
enclosure of habitat, farm-relatedness, and the second fierceness 
factor (factor 4). To test the interpretation of the semantic labels 
associated with these factors, latent semantic analysis (LSA, 
http://lsa.colorado.edu) was used, which represents a word's 
meaning by its statistical co-occurrence with other words in a 
large corpus of text (Deerwester et al., 1990; Landauer & 
Dumais, 1997). LSA was used to determine the distance between 
each of the 30 animal names and a string of one to three words 
(excluding the animal names) intended to describe a given 
factor. The string defined for enclosure of habitat was “hole den 
burrow”; for farm-relatedness it was “farm”; and for the second 
factor for fierceness it was “attack ferocious force.” The resulting 
LSA-computed distances between each animal and the 
descriptive strings were correlated with the animals’ 
corresponding factor scores derived from the brain activation 
patterns as follows: enclosure of habitat: r(28) = 0.50, p < 0.01; 
farm-relatedness: r = 0.35, p = 0.06 (marginally significant); and 
fierceness (factor 4): r = 0.38, p < 0.05, indicating that the second 
factor for fierceness retains some association with this attribute. 

Note that the choice of LSA over WordNet was made to 
provide a linguistic interpretation of the factors to test the 
hypothesis that the factors correspond to animal properties. LSA 

 

http://lsa.colorado.edu/
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has been used by previous studies to provide a linguistic 
interpretation of factors (e.g. Just et al., 2010). The possibility of 
a taxonomic basis to the animals’ neural representation was 
explored in the comparison of the k-means clusters of the neural 
representations with the scientifically-defined taxonomic 
groups, rather than through a comparison to WordNet’s 
taxonomic structure (Miller, 1995). Although some studies have 
shown a correspondence between activation patterns of object 
concepts and taxonomic structure as modeled by WordNet, 
these studies considered objects across qualitatively different 
categories (e.g. animate and non-living categories) and thus 
demonstrate a significant effect of category boundary (e.g. 
Kriegeskorte, 2008; Fairhall & Caramazza, 2013; Carlson et al., 
2014). By contrast, research that examined within-category 
neural similarity (e.g. only between animals) did not find a 
relationship with WordNet (Carlson et al., 2014). 

 
3.2.5.  Summary 

The principal dimensions underlying the neural 
representations of the animal concepts corresponded to 
intrinsic properties of animals. The brain areas associated with 
a given factor have been shown in previous studies to be 
involved in perceptual, cognitive, or social processing related to 
that factor. Furthermore, two independent metrics obtained 
without brain imaging (i.e. behavioral ratings of animal 
properties, and corpus-based characterizations of word 
meaning) bore a substantial relation to the characterization 
obtained through factor analysis of the brain activation patterns. 
These results are consistent with the hypothesis that the fMRI 
data reveal the core properties of animal concepts evoked 
during contemplation of individual animals (Hypothesis 2A). 

 
3.3.  The factors underlying the dissimilarity ratings 
indicated taxonomic groups of the animals 

 
The factors underlying the dissimilarity ratings ordered 

the animals according to the degree to which they fit into 
different taxonomic groups (taxa). These factors corresponded 
to rodent, equine, feline, primate, canine, and bovine taxa. (The 
bovine factor might also be interpreted as a farm-relatedness 
factor, although this is less likely given the taxonomic basis for 
the other factors.) Figure 4 shows how the factor loadings 
ordered the animals along each factor. 

There were two clusters of animals in each factor: one 
cluster containing a few animals with high loadings on that 
factor, and one cluster with most or all of the remaining animals 
with low loadings on that factor. For example, in the feline factor 
(factor 3) there was a cluster of feline animals as well as a non-
feline cluster. The equine factor (factor 2) had a cluster of equine-
like animals with intermediate factor loadings, and some of 
these animals did not load high on any of the factors, namely 
camel, giraffe, and elephant (other ungulates, i.e. hoofed 
animals). The percentage of variance accounted for by each of 
the six factors was rodent: 15.3; equine: 13.9; feline: 10.4; 
primate: 7.2; canine: 5.6; and bovine: 5.4. 

 
3.3.1.  Testing the interpretation of the factors against a 
scientific taxonomic classification of the animals 

To test the interpretation that the factors underlying the 
dissimilarity ratings correspond to different taxa, the groups of 
animals indicated in the factors were compared to a scientific 
taxonomic classification of the animals (as specified by the 
Integrated Taxonomic Information System, www.itis.gov). First, 
a data-driven method, k-means clustering, was applied to the 

dissimilarity ratings to separate the animals into the groups that 
were suggested by the factors. The number of requested clusters 
k was set to 7, which equaled the number of distinct taxonomic 
groups indicated in the factors (including a group of equine-like 
animals suggested in the equine factor, which did not load high 
in any factor). The scientifically-defined taxonomic groups of the 
animals were formed by grouping together animals that have the 
same classification at a taxonomic rank of genus, family, or order 
(the three ranks directly above species). There were nine such 
groups. Two of the 30 animals did not share their taxonomic 
classification with any of the other animals, and so constituted 
their own singleton groups. 

The groups of animals from the clustering of the 
dissimilarity ratings and as defined from the scientific 
taxonomic classification are detailed in Table II. The degree of 
agreement in the  

animals’ group assignments between the dissimilarity 
ratings and taxonomic classification was quantified using the 
Wallace coefficient, which expresses this agreement on a 
continuous scale between 0–1 (Wallace, 1983). The degree of 
congruence between the classifications was high: Wtaxonomyratings 
= 0.67, 95% CI [0.55, 0.79], meaning that if two animals are in 
the same group according to the taxonomic classification, they 
have a 67% chance of being in the same group assignment 
according to the clustering of the dissimilarity ratings. This 
degree of agreement was greater than the value expected by 
chance: the Wallace coefficient of independence Wi 

(taxonomyratings) did not fall within the Wtaxonomyratings 95% 
confidence interval (Wi (taxonomyratings) = 0.13), hence the null 
hypothesis of independence between the classifications was 
rejected (Pinto et al., 2008). Furthermore, Wratingstaxonomy = 0.54, 
95% CI [0.34, 0.74], and the corresponding Wallace measure of 
independence Wi (ratingstaxonomy) did not fall within the 
Wratingstaxonomy 95% confidence interval (Wi (ratingstaxonomy) = 
0.10). Table III contains the contingency table that presents the 
numbers of animals that shared their group assignment between 
the two classifications. 

By contrast, there was no statistically significant 
agreement between the scientifically-defined taxonomic groups 
of animals and k-means clusters of the fMRI data. (K-means 
clustering of the fMRI data yielded k = 7 clusters that were not 
easily interpretable.) WfMRItaxonomy = 0.12, 95% CI [0, 0.26], and 
the Wallace coefficient of independence Wi (fMRItaxonomy) was 
within the WfMRItaxonomy 95% confidence interval (Wi 

(fMRItaxonomy) = 0.10), hence the null hypothesis of independence 
between the classifications was not rejected. Furthermore, 
WtaxonomyfMRI = 0.16, 95% CI [0, 0.32], and the Wallace coefficient 
of independence Wi (taxonomyfMRI) also fell within the 95% 
confidence interval (Wi (taxonomyfMRI) = 0.13). Table III contains 
the contingency table which presents the lack of congruence 
between the two classifications. 

 
3.3.2.  Summary 

The factors of the behavioral dissimilarity ratings were 
consistent with a scientific taxonomic classification of the 
animals, indicating rodent, feline, canine, and other taxa. 
Taxonomic grouping reflects the degree to which animals are of 
the same kind based on multiple shared properties. These 
results agree with previous accounts of adults’ taxonomic 
intuitions about animals (Kemp & Tenenbaum, 2008; Unger et 
al., 2016). The results are consistent with the hypothesis that the 
dissimilarity ratings reveal the domain-level structure of the 
knowledge of animals (Hypothesis 2B).
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Figure 4. The factors underlying the dissimilarity ratings indicated a division of the animals into 

taxonomic groups. For each factor depicted above, the 30 animals are arranged on a line according to 

their loadings on that factor. In each factor there were two clusters of animals: one with few animals that 

had high face validity for the factor label and high loadings (colored in blue); and a second cluster with 

most or all of the remaining animals which loaded low. The equine factor (factor 2) had a cluster of 

equine-like animals with intermediate factor loadings, and some of these animals did not load high on 

any of the factors, namely camel, giraffe, and elephant (other ungulates, i.e. hoofed animals). 
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Table III. Contingency tables demonstrating agreement of the scientific taxonomic classification with the 
behavioral dissimilarity ratings, but not with the fMRI data, in the animals’ group assignments 

         

  Groups of animals from scientific taxonomic classification 

  Rodents Equines Felines Primates 

 

Canines and 
caniforms 

Bovids 
Other 
ungulates 

Probos- 
cideans 

Leporids 

C
lu

s
te

rs
 o

f 
a
n

im
a
ls

 f
ro

m
 

d
is

s
im

il
a
ri

ty
 r

a
ti

n
g

s
 

Rodents 5    1    1 

Equines  3     2   

Felines   4  1     

Primates    3      

Canines     3     

Bovids      3 1   

Other 
ungulates 

      2 1  

   

  Groups of animals from scientific taxonomic classification 

  Rodents Equines Felines Primates 

 

Canines and 
caniforms 

Bovids 
Other 
ungulates 

Probo- 
scideans 

Leporids 

C
lu

s
te

rs
 o

f 
a
n

im
a
ls

 f
ro

m
 

fM
R

I 
a
c
ti

v
a
ti

o
n

 p
a

tt
e
rn

s
 

Cluster 1 1 1  1 1  1   

Cluster 2 2      1  1 

Cluster 3   1 1 1 1 1   

Cluster 4  1    2    

Cluster 5 1 1   2     

Cluster 6   2  1  1 1  

Cluster 7 1  1 1   1   

           
Note. The contingency tables specify for each group of animals the numbers of those animals that belong to the groups of the other 
classification. Blank entries denote “0.” Top row: Most or all of the animals in each cluster from the dissimilarity ratings were identically 
assigned according to the scientific taxonomic classification. Bottom row: The animals in the (unnamed) clusters from the fMRI data were 
randomly distributed among the groups of animals defined from the scientific taxonomic classification. 
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4.  Discussion 
 
This study demonstrates that brain reading and behavioral 

paradigms may provide complementary characterizations of the 
representations of concepts, using animal concepts as a case 
study of the comparison. The current study focused on 
comparing brain reading results to behavioral dissimilarity 
ratings, given that concept representations have traditionally 
been explored using dissimilarity judgments since the 
development of multidimensional scaling and clustering 
techniques, which model the structure of similarity data (Borg & 
Groenen, 1997; Ruts et al., 2004). Exploratory factor analysis 
was separately applied to multivoxel patterns of brain activation 
underlying animal concepts and to dissimilarity ratings between 
pairs of the same animals, revealing differences in their principal 
dimensions. Representational similarity analysis also indicated 
that there was some commonality in the representations 
revealed by the two paradigms. Taken together, the results 
suggest that fMRI measures of thinking of individual concepts 
reveal their intrinsic properties, whereas behavioral tasks such 
as dissimilarity ratings reveal the structure of the knowledge of 
a domain of concepts. 

Concept knowledge refers to both the semantic content of 
individual concepts, and to the structure of that knowledge as 
manifested by the relationships among related concepts. A 
unified characterization of animal concept knowledge emerged 
from an analysis of complementary datasets, namely the neural 
representations of 30 animal concepts and dissimilarity 
ratingsbetween pairs of the same animals collected in a previous 
behavioral study (Henley, 1969). As hypothesized, the animal 
concepts’ neural representations encoded a set of core 
properties of animals. On the other hand, the dissimilarity 
ratings encoded a scientifically-defined taxonomic organization 
of the concept knowledge of the animals. The 29 dissimilarity 
judgments made per animal might have been expected to reflect 
a richness of animal properties, including properties that 
provide contrasts among the animals, but the findings suggest 
that the main information underlying the behavioral 
dissimilarity ratings consists of inter-item taxonomic 
relatedness, thus indicating a domain-level structure of the 
concept knowledge about animals. 

The results here complement previous research that 
related neural concept representations to behavioral 
dissimilarity ratings of the concepts. Using representational 
similarity analysis, previous studies found that dissimilarities of 
animal concepts based on multivoxel activation patterns in 
lateral occipital complex, but not in other brain areas, resembled 
dissimilarity ratings of the animals (Weber et al., 2009; Carlson 
et al., 2014; Connolly et al., 2012; Connolly et al., 2016). Lateral 
occipital complex has been shown to encode information about 
object geometry and other visual features (Grill-Spector et al., 
2001). Notably, these studies investigated the neural 
representation of only a small number of animals (between 6-
12), and three studies used animals from different classes (bugs, 
birds, reptiles, and mammals) (Connolly et al., 2012; Carlson et 
al., 2014; Connolly et al., 2016). Thus, information about body 
shape and other visual features may be sufficient to 
disambiguate a small number of animals from different animal 
classes, demonstrating an apparent taxonomic basis to their 
neural representations. These studies also found additional 
brain areas that contained information about the animal 
concepts, such as inferior frontal gyrus, precentral gyrus, middle 
temporal gyrus, and intraparietal sulcus. However, the 
dissimilarities among the neural representations of the animal 

concepts in these areas did not resemble the dissimilarities in 
the behavioral ratings. These areas, in addition to lateral 
occipital complex, were also found in the present study to 
underlie the neural representation of the animal concepts. Thus, 
although some brain areas may contain information about 
animals that appears to disambiguate them along taxonomic 
lines, a more comprehensive representation of animal concepts, 
distributed across many different brain areas, was found here to 
encode a limited number of intrinsic animal properties that do 
not constitute a scientific classification of animals more 
generally. The results reported here may possibly extend to 
representations of other types of concepts besides animals, such 
as tools and other manmade objects. That is, contemplation of a 
given individual concept may generally activate only a small 
number of intrinsic properties of the concept. 

The differences in the principal dimensions underlying the 
representations highlight the perspective afforded by fMRI 
measures of concept representation. Brain reading methods 
enable a characterization of the representation of individual 
concepts. This is made by possible by the evocation of a large 
multivariate dataset of brain activation associated with a 
concept by even brief periods of consideration. 

Brain reading paradigms might also be useful in revealing 
core, context-independent properties associated with an 
individual concept. A concept’s neural representation can be 
elicited through minimal cognitive processing, thus 
circumventing a complex behavioral task that might introduce 
additional cognitive processes and influence the concept’s 
properties that are evoked. The representation of a concept is 
thought to be variable and to depend on the evoking context (Yee 
& Thompson-Schill, 2016); thus “core properties” here refers to 
intrinsic properties that are most often evoked across different 
contexts. It may be interesting for future research to determine 
the extent to which spreading brain activation evokes additional 
properties of a concept, such as less critical properties and those 
not explicitly thought about (Collins & Loftus, 1975; Anderson, 
1983). 

Behavioral methods for determining the properties of a 
concept may also produce both intrinsic and taxonomic 
information, such as in a task requiring the listing of a concept’s 
properties. These data may indicate the relationships among 
concepts and thus the structure of that knowledge, which can 
provide insight on how people reason using those concepts 
(Kemp & Tenenbaum, 2008). Dissimilarity ratings may be 
particularly well suited to focus on properties that distinguish 
concepts, indicating how they are organized in a larger 
representational space that subsumes many different concepts. 

What has not yet been attempted is a brain reading study 
that uses a concept comparison task that resembles a 
dissimilarity rating task. Comparing brain reading and 
behavioral measures while keeping the task the same is an 
important consideration, given that the types of information 
retrieved about a concept have been shown to depend on the 
evoking task or context (Xu et al., 2018). Dissimilarity rating 
tasks can require large numbers of judgments, which are difficult 
to accommodate in an fMRI study. However, it is possible that 
such an fMRI task would reveal interesting additional details 
about taxonomically oriented neural representations, such as 
the properties of animal concepts that underlie the comparisons. 

Another avenue of future research could be to explore how 
neural concept representations change as a function of the 
amount of time allotted to thinking about the concept stimuli. 
For example, studies that evoke event-related potentials present 
word stimuli tachistoscopically (on the order of 100ms stimuli 
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durations) (Hauk & Pulvermüller, 2004). One possibility is that 
minimal semantic processing gives rise to concept 
representations that are less enriched by semantic features 
(Bauer & Just, in press). Briefer presentations would also serve 
to further minimize confounds due to stimuli themselves. Future 
research could more precisely characterize the content and 
structure of concept representations that are activated during 
very brief periods of consideration, such as in everyday speech. 

This study shows how a more complete characterization of 
concept knowledge emerges from complementary results from 
brain reading and behavioral methods such as dissimilarity 
ratings. Comparative research may enable a greater 
understanding of concept representation through future 
research or an integration of comparable existing datasets. 
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