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Abstract: Although enormous progress has recently been made in identifying the neural representations
of individual object concepts, relatively little is known about the growth of a neural knowledge represen-
tation as a novel object concept is being learned. In this fMRI study, the growth of the neural representa-
tions of eight individual extinct animal concepts was monitored as participants learned two features of
each animal, namely its habitat (i.e., a natural dwelling or scene) and its diet or eating habits. Dwelling/
scene information and diet/eating-related information have each been shown to activate their own char-
acteristic brain regions. Several converging methods were used here to capture the emergence of the neu-
ral representation of a new animal feature within these characteristic, a priori-specified brain regions.
These methods include statistically reliable identification (classification) of the eight newly acquired mul-
tivoxel patterns, analysis of the neural representational similarity among the newly learned animal con-
cepts, and conventional GLM assessments of the activation in the critical regions. Moreover, the
representation of a recently learned feature showed some durability, remaining intact after another fea-
ture had been learned. This study provides a foundation for brain research to trace how a new concept
makes its way from the words and graphics used to teach it, to a neural representation of that concept
in a learner’s brain. Hum Brain Mapp 36:3213–3226, 2015. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

In August, 2013, the Smithsonian Institution announced
the discovery of the olinguito, the first new species of
carnivore to be identified in the Western hemisphere in 35

years. The olinguito is a mammal that eats mainly fruit
instead of meat, and it lives by itself in the treetops of
foggy rainforests. Millions of people encountered this
semantic information and thereby permanently changed
their own brains to encode the new animal concept. Our
research happened to be examining this process at that
time in a laboratory setting, using functional magnetic res-
onance imaging (fMRI) and multivoxel pattern analyses
(MVPA) to discover how the neural representation of a
novel animal concept arises in the brain as a person learns
about the features of that animal.

A key goal of cognitive neuroscience is to delineate the
nature, content, and anatomical distribution of the neural
representation of knowledge in long-term semantic mem-
ory. The importance of concept knowledge is that it under-
lies human thought, communication, and daily activities,
from small talk about well-worn topics to the learning of
quantum physics or the pioneering of new scientific dis-
coveries. Accordingly, research that uncovers the neural
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representations of different concepts (such as that of a
tool, emotion, or number) has made considerable head-
way, particularly research on object concepts [e.g. Kassam
et al., 2013; Damarla and Just, 2013; for a review on object
concepts see Martin, 2007].

Research to date has revealed that object concepts
(such as the concept of a hammer) are neurally repre-
sented in multiple brain regions, corresponding to the
various brain systems that are involved in the physical
and mental interaction with the concept. The concept of
a hammer entails what it looks like, what it is used for,
how one holds and wields it, and soforth, resulting in a
neural representation distributed over sensory, motor,
and association areas. There is a large literature that
documents the responsiveness (activation) of sets of brain
regions to the perception or contemplation of different
object concepts, including animals (animate natural
objects), tools, and fruits and vegetables (for a compre-
hensive fMRI study see Huth et al., 2012]. For example,
fMRI research has shown that nouns that refer to physi-
cally manipulable objects such as tools elicit activity in
left premotor cortex in right-handers, and activity has
also been observed in a variety of other regions to a
lesser extent [Chao and Martin, 2000]. Clinical studies of
object category-specific knowledge deficits have uncov-
ered results compatible with those of fMRI studies. For
example, damage to the inferior parietal lobule can result
in a relatively selective knowledge deficit about the pur-
pose and the manner of use of a tool [for a review of the
clinical literature see Capitani et al., 2003].

The significance of such findings is enhanced by the com-
monality of neural representations of object concepts across
individuals [Shinkareva et al., 2012]. For example, pattern
classifiers of multivoxel brain activity trained on the data
from a set of participants can reliably predict which object
noun a new test participant is contemplating [Just et al.,
2010]. Similarity in neural representation across individuals
may indicate that there exist domain-specific brain networks
that process information that is important to survival, such
as information about food and eating or about enclosures
that provide shelter [Mahon and Caramazza, 2003].

Although research on the neural representations of
familiar object concepts has progressed considerably, rela-
tively little is known about the changes that occur in a
neural knowledge representation as a novel object concept
is being learned. A small number of fMRI studies have
explored changes in sites of activation after the learning of
novel object concepts. For example, after a hands-on ses-
sion of learning how to use novel tool-like objects, activa-
tion to pictures of the objects was found to shift
predominantly to motor cortex (e.g., left premotor cortex)
compared to prelearning [Weisberg et al., 2007]. In another
study, after participants were verbally instructed about the
kind of motion or sound that was associated with novel
living objects, the brain activation elicited by the object
pictures was localized to motion-specific or auditory cortex
[James and Gauthier, 2003].

In the current fMRI study, the growth of the neural rep-
resentations of individual novel natural concepts was
tracked as they were enriched regarding two object fea-
tures. By sequentially teaching two features, it was possi-
ble to both (i) study the emergence of the neural
knowledge representation of a feature directly after
instruction and (ii) assess the retention of the neural repre-
sentation of a previously learned feature beyond its learn-
ing period.

The novel concepts that were taught in this study were
animal concepts (derived from actual extinct animals). In
the scanner, participants viewed pictures of the animals
while they received written information about two types
of feature of the animals, namely their habitats (i.e., natu-
ral dwellings or scenes) and diets or eating habits. After
instruction about a feature, the neural representation of an
emerging animal concept was assessed with fMRI as par-
ticipants thought about that animal, including each feature
that had been taught so far. The experimental paradigm is
depicted in Figure 1. Activation was examined in a priori-
specified regions-of-interest (ROIs), which are shown in
Figure 2. The regions where habitat-related activation was
expected included the parahippocampal gyrus, which is
well known to activate to information about dwellings and
scenes [Epstein and Kanwisher, 1998]. Other habitat-related
areas included the precuneus, which also activates to
information about dwellings [Just et al., 2010]. These areas
were anatomically close to the retrosplenial cortex, which
is thought to be involved in spatial updating between ego-
centric and allocentric points of view, and in localization
of a scene within a larger, extended environment [Epstein
and Higgins, 2007; for a review on the retrosplenial cortex
see Vann et al., 2009]. These roles are consistent with the
possible cognitive processes required to learn about an
animal’s habitat, such as imagining how an animal might
spatially fit into its surrounding habitat. The regions where
diet-related activation was expected included areas within
the left inferior frontal gyrus because this region activates
to words about foods and eating-related objects [Just et al.,
2010] and face- and jaw-related actions [Hauk et al., 2004].

There were two goals of the current study: one goal was
to monitor the growth of a neural representation after the
integration of knowledge of a feature into each animal
concept. It was hypothesized that activation levels would
increase in brain regions a priori predicted to encode
newly acquired knowledge of a feature (Hypothesis 1A).
This expectation is consistent with the results of previous
research that compared univariate measures of activation
before and after learning [for example, James and Gauth-
ier, 2003]. It was also hypothesized that a classifiable mul-
tivoxel representation of the new feature knowledge of
each animal concept would emerge within the same brain
regions (Hypothesis 1B). Detection of a unique neural
encoding of each concept would go beyond a mean
activation-based finding that the brain areas are somehow
involved in the processing of a class of concepts [Mur et al.,
2009]. Furthermore, a posteriori, it was examined whether
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Figure 1.

Experimental paradigm and trial presentation order. A: Sche-

matic of the scanning experimental paradigm and trial presenta-

tion order. One feature knowledge type (habitat or diet) was

taught about all the animals before the other knowledge type.

Two participant groups were taught the knowledge types in dif-

ferent orders. During instruction trials, participants were asked

to silently read and remember the animal name, and imagine

and think about the animal embodying only the new feature

description. During thinking trials, participants were asked to

imagine and think about the animal embodying every feature

taught about thus far for that animal. The main focus of the data

analysis was on activation from the thinking trials, which was

hypothesized to constitute the neural representations of the ani-

mal concepts. B: Schematic of the full instruction trial and thinking

trial presentation order for Cytar, a sample animal (in this exam-

ple, habitat is learned before diet). Figure S1 contains detailed

information for all eight of the animal concept stimuli.
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animals that were described as having similar features
became neurally more similar to each other, namely, have
similar multivoxel activation patterns in brain areas that
encode that feature (Hypothesis 1C). Verification of this
hypothesis would further indicate that the emergence of
distinguishable activation patterns of the animal concepts
was driven by the specific feature information that was
taught about each of the various animals.

Another research goal was to track the fate of the neural
knowledge representation of a previously learned feature
into the learning period of a different feature. In brain
regions a priori postulated to encode the first feature, it
was expected that the recently heightened activation levels
of the first feature learning period would persist after
instruction about the second feature (Hypothesis 2A). Sim-
ilarly, it was hypothesized that the multivoxel representa-
tions of the first taught feature of each animal concept
would remain classifiable during the learning period of
the second feature (Hypothesis 2B). Finally, there was no
hypothesis about whether there would be a change in the
similarity relations among the neural representations of

the concepts with respect to the first feature after the sec-
ond feature was taught.

A secondary hypothesis was that activation levels dur-
ing instruction periods would be elevated in the same
brain regions predicted to represent that feature informa-
tion after instruction and learning (Hypothesis 3). Partici-
pants were also expected to behaviorally demonstrate
learning of the animal concepts during a recall task at the
end of the experiment (Hypothesis 4).

MATERIALS AND METHODS

Participants

Sixteen right-handed adults (ten males, six females;
mean age of 22.4 years, ranging from 18 to 34) from Car-
negie Mellon University and the Pittsburgh community
participated and gave written informed consent approved
by the Carnegie Mellon Institutional Review Board. Three
additional participants’ data were excluded because of
excessive head motion (greater than 4mm total

Figure 2.

A priori-specified ROIs predicted to encode the new feature

knowledge. The set of (A) habitat and (B) diet clusters used as

ROIs (clusters adapted from Just et al., 2010). The diet clusters

overlapped partially (purple area in B). The clusters were ren-

dered on an MNI template brain using the 3D medical imaging

software MRIcroGL (Rorden and Brett, 2000). For data analysis,

40 voxels were selected from each set of ROIs for a given fea-

ture knowledge type. The right-most column of the table above

shows the mean (over participants) distribution of the 40 voxels

over the ROIs of a given feature knowledge type, for the analy-

ses of the activation levels and classification accuracies of the

thinking trial data. (Information about the voxel selection crite-

rion is found in the section of the text on the classification pro-

cedures.). L: left; R: right; ROI: region of interest; MNI: Montreal

Neurological Institute template.
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displacement in any dimension). Three other participants’
data were discarded due to chance-level multivoxel pat-
tern classification accuracy of the animal concepts (classifi-
cation features were the 120 most “stable” voxels selected
from anywhere in the brain excluding the occipital lobe;
more detail concerning classification is provided below).
This classification, which differed from the classification
analyses that tested the hypotheses, was used to check for
systematicity in a participant’s activation patterns regard-
less of its correspondence to the hypotheses.

Experimental Paradigm

Functional images were acquired for the entire duration
of the learning of the animal concepts. There were a total
of eight novel animals (four mammals and four birds), all
of which were based on real extinct animals. The two fea-
ture knowledge types that were taught were habitat and
diet. In a feature learning period, the same feature type
was taught for all the animals, one animal at a time, before
proceeding to the second feature. The order in which the
two features were taught was balanced across participants
(two groups of eight participants). The fMRI data associ-
ated with the two features were acquired in two separate
21.8-min scans.

Interleaved sets of instruction and thinking trials were pre-
sented within each feature learning period. The instruction
trials conveyed the new information about the feature
currently being taught. During the thinking trials, which fol-
lowed each round of instruction trials, participants were
prompted to imagine and think about an animal and the fea-
ture(s) that they had been taught about thus far. The thinking
trials constitute the type of paradigm that has previously
been used to evoke activation that is amenable to classifica-
tion [e.g., Just et al., 2010; Kassam et al., 2013]. Thus the anal-
ysis of newly acquired feature information focused on the
activation patterns obtained during the thinking trials.

The scanning experimental paradigm and trial presenta-
tion order is shown in Figure 1A. Within a feature learn-
ing period, each set of instruction and thinking trials cycled
through each animal three times; the trial presentation
order randomly intermixed the repetitions of a given ani-
mal with the repetitions of other animals. Thus, in a learn-
ing period, participants (i) were taught about one feature
for each animal six times to allow for sufficient learning;
and (ii) imagined and thought about each animal and its
associated feature(s) six times so that there was enough
data for the multivoxel pattern classification analysis.

Each instruction trial displayed information about one
animal, including (i) a name (significantly shortened and
changed from the animal’s scientific taxonomic name), (ii)
a picture, and (iii) a short phrase describing a feature. For
example, the four-winged dinosaur bird species Microrap-
tor zhaoianus was called Cytar in the experiment, and the
descriptions of its habitat and diet were as follows: “Lived
in its large tree nest” and “Chewed on tree fruits with

small teeth.” Figure 1B depicts the instruction trial (left-
hand column) and thinking trial presentation order for
Cytar (in this example, habitat is learned before diet). Dur-
ing the instruction trials, participants were asked to silently
read and remember the animal name, and imagine and
think about the animal including the feature. A trial con-
sisted of 5s display-time and 7s off-time (a fixation “X”
was shown during off-time).

Each thinking trial consisted of only a picture and name
for one animal, with no feature description. The same tim-
ing parameters were used for the thinking trial presentations
as for the instruction trials. Participants were prompted by
the picture and name to imagine and think about the ani-
mal including the feature(s) that had been taught thus far
for that animal. This consisted of just one feature after infor-
mation about the first feature was taught and both features
after the second feature was taught. Participants were asked
to use mental imagery so as to maximize the amount of
semantic information retrieved. It was emphasized to par-
ticipants that they think the same thoughts for each repeti-
tion of an animal, to ensure comparability of the data across
repetitions. Participants were free to choose which specific
details to think about, in which sensory modalities, and
whether and how to include motor imagery.

Visual depictions of the animals were included in the
experiment to facilitate a detailed instantiation of each
novel animal. Participants in a pilot study reported diffi-
culty in thinking about a novel animal’s eating habits, for
example, when they did know what the animal looked
like. Instantiation of the animals in terms of a picture
improved classification accuracies in the pilot study and
hence pictures were included in the study.

There were ten total presentations of an “X” alone in the
center of the screen, 24s each, distributed evenly through-
out the two scans to provide a baseline measure for calcu-
lating percent signal change (PSC) in the fMRI signal and
for statistical parametric mapping. During these fixation
periods and the off-time portion of each instruction and
thinking trial, participants were instructed to fixate on the
“X” and clear their minds.

Supporting Information Figure S1 contains detailed
information for all eight of the animal concept stimuli. Par-
ticipants were informed at the end of the experiment that
the animals taught to them were derived from real extinct
animals, but that the animal names used were not the
actual scientific taxonomic names.

fMRI Scanning Parameters and Data

Preprocessing

Functional blood oxygen level-dependent (BOLD)
images were acquired on a 3T Siemens Verio Scanner and
32-channel phased-array head coil (Siemens Medical Solu-
tions, Erlangen, Germany) at the Scientific Imaging and
Brain Research (SIBR) Center of Carnegie Mellon Univer-
sity using a gradient echo EPI sequence with TR 5 1000
ms, TE 5 25ms, and a 608 flip angle. Seventeen 5-mm thick
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oblique-axial slices were imaged with a gap of 1 mm
between slices, starting at the bottom in an interleaved
spatial order. The acquisition matrix was 64 3 64 with
3.125 3 3.125 3 6 mm voxels.

Data preprocessing was performed with the Statistical
Parametric Mapping software (SPM2, Wellcome Depart-
ment of Cognitive Neurology, London, UK). Images were
corrected for slice acquisition timing, motion, and linear
trend; temporally smoothed with a high-pass filter using a
190s cutoff; and normalized to the Montreal Neurological
Institute (MNI). The thinking trial data were analyzed with
a multivoxel pattern classification analysis to study the
neural representations of the animal concepts; these
images were not spatially smoothed.

The instruction trial data were analyzed using SPM2
using the general linear model (GLM) and Gaussian ran-
dom field theory. The voxels were smoothed with an 8-
mm full-width half-maximum (FWHM) Gaussian kernel to
decrease spatial noise.

Regions of Interest

A set of a priori ROIs for each feature knowledge type
was generated and used for analysis; these included voxels
predicted to encode habitat, and a separate group of voxels
predicted to encode diet. The ROIs were adapted from a
previous study that localized each of these factors to a set
of six brain regions [Just et al., 2010]. The ROIs that were
adapted included the bilateral parahippocampal gyrus and
bilateral precuneus clusters (labeled “shelter” in the origi-
nal study) to create the habitat set of ROIs; and the left
inferior frontal gyrus clusters (labeled “eating”) were
adapted to create the diet set.

Adaptation of the clusters from the original study pro-
ceeded as follows: first, gray matter spheres were created
using the centroids of the original clusters. The radius of
each sphere was set to 15 mm, resulting in increased vol-
umes to allow the ROIs to be more generalizable to the
participants in the current study. Enlargement of the para-
hippocampal gyrus ROIs in this way initially resulted in
inclusion of voxels from the fusiform gyrus and cerebel-
lum [identified as such using Automated Anatomic Label-
ing (AAL), Tzourio-Mazoyer et al., 2002]; these latter
voxels were then excluded from the ROI. Figure 2 depicts
and provides more information about the ROIs used in the
current study. The ROIs served as a pool of voxels from
which a subset was selected for data analysis. (The section
below on the classification procedures contains a descrip-
tion of how this subset of voxels was defined.)

Data Analysis

Overview: monitoring the growth of the neural
representations of the animal concepts

A combination of analyses of activation levels (percent
signal change), accuracies of multivoxel pattern classifica-

tion, and representational similarity relations among the
activation patterns were used to test the hypotheses about
the growth of the neural representations of the animal con-
cepts. After the teaching of feature information about a
knowledge type (habitat or diet), activation levels and clas-
sification accuracies of the concepts were expected to
increase in brain regions a priori predicted to encode that
knowledge type (Hypotheses 1A-B). In addition, it was
examined a posteriori whether animals that were
described as having similar features became neurally more
similar to each other with respect to that feature, after
instruction about that feature (Hypothesis 1C). Finally,
activation levels and classification accuracies in the regions
that encode the first-instructed knowledge type were
hypothesized to retain their recently heightened levels into
the learning period of the second knowledge type
(Hypotheses 2A-B). Data from the thinking trials (when
feature knowledge was being recalled) were analyzed. To
correct for possible drift in the baseline signal levels
throughout the scans, each acquired image was normal-
ized (mean 5 0, SD 5 1) across gray matter voxels from the
whole brain. Analyses of activation levels and classifica-
tion accuracies used data from the same set of voxels that
was selected for each partitioning of the data into classifi-
cation cross-validation training and test sets. The section
below on the classification procedures contains more infor-
mation about the voxel selection criterion. The representa-
tional similarity analysis was performed using voxels
selected according to the same voxel selection criterion
that was applied once across all the data.

Measuring the emergence of the neural knowledge

representation of a learned concept feature

Activation levels in brain regions a priori predicted to
encode the second feature were compared before versus
after the time when the information about the second fea-
ture had been taught. This comparison was made for each
of the eight animals. (Note that there was no assessment
of the acquisition of the first feature because there was no
baseline for comparison obtained before the first feature
learning period.) The activation levels were analyzed with
a mixed-model ANOVA defined by participant group
(two groups) and preinstruction and postinstruction about
the second feature.

Additionally, a 16-way multivoxel pattern classification
analysis was performed, based on the activation for the
eight animal concepts both before and after instruction
about the second feature within brain regions specific to
the second feature. A classification accuracy was obtained
for each of the 16 items. The same voxels were used to
assess the neural representations before and after instruc-
tion. The mean accuracies across participants over the
eight animals before instruction about the second feature
were compared to the mean accuracies over these eight
animals after instruction. The classification accuracies were
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analyzed with a mixed-model ANOVA similar to that
used to analyze the activation levels.

Representational similarity analysis was used to deter-
mine whether the animals that were described as having
similar second-taught features became neurally more simi-
lar after the feature instruction, based on activation patterns
from the same a priori-specified brain regions as in the
analyses above. An independent group of eight raters was
instructed to select only four to six pairs of animal feature
descriptions that were highly similar, out of the set of 28
possible pairs between the eight animals (for habitat and
diet separately). (Prior examination of the features identified
between four to six pairs that were highly similar.) The
modal number of pairs selected by the raters was four, and
none of the raters selected more than six pairs. The four
pairs that were submitted for analysis were the ones most
frequently selected across the raters, as shown in Table I.

A permutation test was used to determine whether the
change in pairwise correlation distance from preinstruction
to postinstruction differed between these four pairs of ani-
mals and the remaining 24 pairs. The difference in the
change in pairwise correlation distance between the two sets
of pairs of animals (averaged over habitat and diet) was com-
pared to an empirical distribution of difference scores, where
each difference score was calculated after the pairs were ran-
domly assigned to either the “most similar” set of four pairs
or the “least similar” set of 24 pairs. The preinstruction and
postinstruction neural representations of the animal concepts
were calculated by averaging over all the preinstruction and
postinstruction repetitions, and over the participants. The
correlation distance (i.e. 1 – the Pearson correlation between
two vectors) was calculated between all pairs of animals sep-
arately for the four most similar pairs and the remaining 24

pairs. [Correlation distance has been shown to provide better
accounts than other dissimilarity metrics, such as Euclidean
distance; see Kriegeskorte et al., 2008.]

Assessing retention of the neural knowledge represen-

tation of a previously taught feature into the learning

period about a different feature

Activation levels in brain regions postulated a priori to
encode the first-instructed feature were compared before
versus after the second feature had been taught. In addi-
tion, classification accuracies for the 16 items, using voxels
from only the brain regions specific to the first feature,
were compared before versus after the second feature had
been taught, using ANOVA.

Neural evidence of the processing of knowledge
about a feature during its instruction period

During the period of instruction about a feature, elevated
activation levels were expected in the same brain regions a
priori predicted to represent that feature knowledge after
instruction (Hypothesis 3). To test this secondary hypothe-
sis, a random-effects analysis was run on individual partici-
pants’ GLM contrast images between instruction about
habitat and instruction about diet (voxel-wise paired-sample
t-tests). A regressor was specified for a given feature knowl-
edge type, which consisted of the entire set of instruction tri-
als about that feature. Each trial was convolved with the
canonical hemodynamic response function. Because the
instruction trials about each feature were equivalent across
the two participant groups except with respect to presenta-
tion order, the data from the two groups were combined.

TABLE I. Animal feature descriptions including feature pairs rated highly similar

Habitat feature descriptions Diet feature descriptions

Lived in swamps encircled by trees Swallowed mud containing vegetation
Lived within the rainforest canopy Swallowed small seeds and nuts
Lived around and between steep hills Sucked large berries into its mouth
Lived around water in ice caverns Ate eel meat with serrated teeth
Lived near beaches in caves Ate crab meat with sharp teeth
Lived on grasslands around mountains Ate rabbit meat with its sharp beak
Lived in its large and shallow burrow Chewed on grass with flat teeth
Lived in its very large tree nest Chewed on tree fruits with small teeth

The four pairs of habitat features rated highly similar

Lived around and between steep hills Lived on grasslands around mountains
Lived within the rainforest canopy Lived in its very large tree nest
Lived around water in ice caverns Lived near beaches in caves
Lived near beaches in caves Lived in its large and shallow burrow

The four pairs of diet features rated highly similar

Swallowed small seeds and nuts Sucked large berries into its mouth
Ate eel meat with serrated teeth Ate crab meat with sharp teeth
Swallowed mud containing vegetation Swallowed small seeds and nuts
Chewed on grass with flat teeth Chewed on tree fruits with small teeth
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Behavioral evidence of learning the animal concepts

After the scanning, participants were asked to write down
the two features for each of eight animals, prompted by only
the animal names and not the pictures. Responses that were
verbatim or that contained the salient aspects of the features
were counted as correct (out of a possible total of 16).

Multivoxel pattern classification procedures

The classifier used was support vector machines with a
multiway classification decision and linear kernel. The imple-
mentation was a modified version of SVM-light [Joachims,
1999] using MATLAB 6.5 (Mathworks, MA). Classification
proceeded through three stages: (1) algorithmic selection of a
set of voxels to be used for classification; (2) training of a clas-
sifier on a subset of the data; and (3) testing of the classifier
on the remaining subset of the data. The training and testing
used cross-validation procedures that iterated through all
possible partitionings of the data into training and test sets,
always keeping the training and test sets separate.

The 40 most stable voxels were selected from the diet ROIs
and 40 from the habitat ROIs. (The set size of 40 voxels was con-
venient, but other sizes, such as 30–80, resulted in similar out-
comes.) The stability of a voxel was computed as the average
pairwise correlation between its activation profiles (vector of
its activation levels across the 16 items) across the repetitions in
a training data subset [Just et al., 2010]. A voxel’s activation
level was its mean across the seven brain images acquired
within a 7s window, offset 4s from the stimulus onset (to
account for the delay in hemodynamic response). Figure 2
details the distribution of the selected voxels over the ROIs.

For each partitioning into training and test data, the voxel
selection criterion was applied to the training set and the
classifier was trained to associate an activation pattern to
each of the 16 item labels. Four (out of the six) repetitions of
each item were used for training and the mean of the
remaining two repetitions was used for testing, thus mak-
ing 15 total partitionings into training and test data. The
activation values of the 40 voxels were normalized (mean-
5 0, SD 5 1) across all the items, separately for the training
and test sets, to correct for possible drift in the signal across
the six repetitions. Rank accuracy (referred to as accuracy)
was the percentile rank of the correct item in the classifier’s
ranked output [Mitchell et al., 2004].

RESULTS

After Instruction about a Feature, There Were

Changes in Brain Regions That Encode That

Feature Knowledge, Which Were Manifested as

(I) Increases in Activation Levels and (II)

Increases in the Accuracies of multi-Voxel

Pattern Classification of the Animal Concepts

One main finding was that during the thinking trials that
followed instruction about the second feature, there were

increases in the activation levels [F(1, 14) 5 5.01, P< 0.05]
in the a priori-specified brain regions that encode the
instructed feature knowledge (as predicted by Hypothesis
1A). Activation increased bilaterally in parahippocampal
gyrus and precuneus after instruction about habitat, and in
the left inferior frontal gyrus after instruction about diet.
Figure 3A shows that the activation level in the specified
regions increased after information about the feature rele-
vant to the region (habitat or diet) had been taught.

A second main finding was that the animal concepts
enriched by knowledge about the second-taught feature
became reliably more classifiable, using voxels from within
these brain regions as classifier features [F(1, 14) 5 7.16,
P< 0.05; increase in mean accuracy from 0.52 to 0.56], as
predicted by Hypothesis 1B. (The P< 0.05 probability
threshold for a rank accuracy being greater than chance
level is 0.546.) Note that an increase in the mean activation
level for the animal concepts would not in itself necessar-
ily make the concepts more discriminable. The finding of
greater classification accuracy after instruction indicates
that the patterns of activation in the regions used by the
classifier became more systematically individuated after
instruction. As shown in Figure 3B, the classification accu-
racy based on the specified regions reliably increased after
information about the feature relevant to the region (habi-
tat or diet) had been taught.

In summary, the integration of new feature knowledge
into each animal concept was reflected in increases in
mean activation levels and classification accuracies within
the a priori-specified brain regions. The findings occurred
for two types of feature knowledge (habitat and diet) and
two animal categories (mammals and birds).

After Instruction about a Feature, Animals that

were described as Having Similar Features

Became Neurally More Similar to Each Other

with Respect to That Feature

Although the animal features that were taught were not
intended to have any particular semantic relation to each
other, there were several cases in which different animals
had similar features. It seemed plausible that animals that
were similar to each other based on a given feature would
become neurally more similar following instruction about
that feature, in terms of their voxel activation patterns in
the a priori-specified habitat- or diet-related brain regions.
For example, two of the habitat features that were similar
are “Lived around water in ice caverns” and “Lived near
beaches in caves”; two of the diet features that were simi-
lar are “Ate eel meat with serrated teeth” and “Ate crab
meat with sharp teeth.” An independent group of raters
selected four pairs of animal feature descriptions that were
highly similar, out of the 28 possible pairs between the
eight animals (for habitat and diet each). The pairs that
were selected the most frequently across the raters were
designated the most similar animals; Table I contains the
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Figure 3.

Emergence of the neural knowledge representation of a concept

feature. After the teaching of feature information about a knowl-

edge type (habitat or diet), there were increases in (A) activation

levels and (B) multivoxel pattern classification accuracies of the

animal concepts in brain regions a priori predicted to encode

that knowledge type. Rank accuracy was the percentile rank of

the correct item in the classifier’s ranked output. The P< 0.05

probability threshold for an accuracy being greater than chance

level is 0.546. Error bars are standard error of the mean.

*P< 0.05, main effect of teaching of feature knowledge.

Figure 4.

Retention of the neural knowledge representation of a recently taught feature. The (A) activa-

tion levels and (B) classification accuracies in brain regions a priori predicted to encode the

first-instructed feature knowledge type retained their recently heightened levels into the learning

period of the second knowledge type (no main effect of instruction about the second knowledge

type, as expected). Error bars are standard error of the mean.
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feature descriptions for all the animals and indicates these
four similar pairs for each feature type. The results
showed that after instruction about the second feature, the
pairs of animals with the most similar features became
more neurally similar than did the other pairs (P< 0.05
using permutation testing). Note that the features were
presented only in association with an animal, and never as
pairs of features. As shown in Figure 5, there was a
greater decrease in the pairwise correlation distance (i.e.,
greater similarity) between the activation patterns of the
pairs of animals with similar features than for the other
pairs (Hypothesis 1C). Six of the eight total pairs of ani-
mals with similar features consisted of a mammal and a
bird, which indicates that the increase in neural similarity
with learning was based on feature commonality irrespec-
tive of the superordinate category of an animal.

Note that the decrease in dissimilarity (increased similar-
ity) among the animals’ activation patterns is compatible
with the finding of an increase in the discriminability of the
animals (increased classification accuracy) following
instruction on the second feature. Classification accuracy is
determined not only by the dissimilarities among the ani-
mals being classified, but also by the level of noise in the
neural representation (measured by 1—the mean correla-
tion among all the repetitions of a given animal’s activa-
tion patterns). Thus, the increase in classification accuracy
following instruction is likely accounted for by a decrease
in the noise level. The noise level was indeed generally
lower (but not reliably so) after instruction versus before
instruction.

The Neural Representation of a Previously

Taught Feature Remained in Place after

Instruction about a Different Feature Had

Occurred

During the thinking trials following instruction about the
second feature, the neural representation of the first-taught
feature remained at its recently heightened activation level,
indicating that the previously acquired feature knowledge
had been retained (as predicted by Hypothesis 2A). Acti-
vation levels were maintained in bilateral precuneus and
bilateral parahippocampal gyrus (which encode habitat),
and in the left inferior frontal gyrus (diet). (The mean acti-
vation levels did not change and there was no main effect
of instruction about the second feature: F(1, 14) 5 0.03,
P 5 0.89.) Figure 4A depicts the maintenance of the
recently heightened activation level in the voxels that
encode the first-instructed feature knowledge (habitat or
diet).

Another main finding was that even after instruction
about the second feature, the animal concepts remained
reliably classifiable using features (voxels) from within the
brain regions specified for the first feature, as predicted by
Hypothesis 2B [F(1, 14) 5 0.31, P 5 0.59, with a mean accu-
racy of 0.56 before and 0.57 after instruction about the sec-
ond feature]. Figure 4B shows that the accuracy of the
classification based on the voxels specific to the first fea-
ture was maintained. Thus, retention of the neural repre-
sentation of the first-instructed feature was indicated by
the persistence of both the activation levels and

Figure 5.

Decrease in neural dissimilarity between animals with similar

features. After instruction about a feature (habitat or diet), the

pairwise correlation distance (neural dissimilarity) decreased for

the pairs of animals judged to be most similar with respect to

that feature, relative to the pairs of animals that were judged to

be least similar. The decrease occurred in the brain regions a

priori predicted to encode the new feature knowledge. Error

bars are standard error of the mean. *P< 0.05 using permuta-

tion testing.
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classification accuracies within the brain regions specific to
the first feature. These findings occurred for two types of
feature knowledge and two animal categories.

An additional analysis tested the combined predictions
that there would be evidence of an increment in learning
after instruction on a feature (Hypotheses 1A-B—
emergence of new feature knowledge) and evidence of the
maintenance of learning on a previously instructed feature
(Hypothesis 2—retention of formerly learned feature infor-
mation). The standardized classification accuracies and
brain activation levels were submitted to a single ANOVA
as repeated-measures data. The ANOVA revealed an inter-
action effect that was statistically significant (P< 0.05, one-
tailed) in the a priori-hypothesized direction. In the brain
regions corresponding to the second-taught feature there
was an increase in classification accuracy and activation
level after instruction about the second feature, whereas in
the regions corresponding to the first-taught feature there
was a maintenance of classification accuracy and activation
level.

During Instruction about a Feature, Activation

Was Elevated in the Brain Regions Where the

Neural Representation of That Feature

Knowledge Eventually Emerged

Activation during instruction about a feature was ele-
vated in the same brain regions that were a priori pre-
dicted and confirmed (as described above) to encode that
learned feature knowledge (Hypothesis 3). The GLM con-
trast between the two types of instruction trial data (diet
minus habitat) showed that activation was elevated in the
left inferior frontal gyrus during instruction about diet,
and not in the habitat-specific brain regions. Correspond-
ingly, the opposite contrast (habitat minus diet) revealed
that during instruction about habitat, activation was ele-
vated in bilateral parahippocampal gyrus and precuneus
(habitat regions), and not in diet brain regions. Figure 6B
shows the activation clusters that survived an uncorrected
height threshold of t(15) 5 2.13 (P< 0.05, two-tailed) and
an extent threshold of 5 voxels. The clusters were situated
near the a priori ROIs that were used in the analysis of the
thinking trial data, which are shown again in Figure 6A.
The mean Euclidean distance between the centroids of the
a priori regions and the observed instruction-trial corre-
sponding clusters was 11.5 mm, indicating an activation
commonality between learning about a type of feature and
thinking about an animal that possesses that feature.
(Interestingly, despite the activation in these regions being
elevated during instruction trials, the activation patterns
during those trials were not sufficiently distinguishable
from each other to permit reliably accurate classification of
which animal was the target of the instruction.)

The diet minus habitat contrast also revealed increased
activation in an additional brain region that was not in the
a priori set, namely the left postcentral gyrus, which has

been implicated in thinking about physical manipulation
of objects [Just et al., 2010]. It is possible that a description
of what an animal ate entailed activation of a region that
encodes the use of hands, feet, and limbs (for manipula-
tion of food).

The Recall of the Features of Each Animal

Provided Behavioral Evidence of Learning the

Animal Concepts

After the scanning session, participants were asked to
write down their recall of the two features for each of the
eight animals, cued by only the name of each animal. The
modal accuracy of the participants was 100% (recall of all
16 features). The mean accuracy was 75% (SD 5 35%)
because four participants had very poor recall, possibly
because they thought of the animals more in terms of their
pictures than their names, thereby making the name cue
ineffective (one of these four participants volunteered this
rationale during debriefing). There was no relation
between a participant’s recall accuracy either with his or
her activation levels in the critical brain regions or with
the classification accuracies. In summary, these results pro-
vided behavioral evidence that the participants learned the
knowledge whose neural representation was investigated
(as predicted by Hypothesis 4).

DISCUSSION

We can now specify much more precisely than ever
before what happened in the brains of the millions of peo-
ple who learned that the olinguito eats mainly fruit
instead of meat. A region of the left inferior frontal gyrus
as well as several others encoded this semantic informa-
tion, and the information encoding remained intact as they
continued to learn other facts about the olinguito. The new
knowledge gained from the Smithsonian Institution’s
announcement became encoded in the brain areas that
were predicted to contain this type of information.

This study is among the first to document the establish-
ment of a neural knowledge representation of a newly
learned concept, and furthermore, the representation was
present within brain regions that were predicted a priori
to represent the new knowledge about a particular feature
type. Although the absolute classification accuracy of the
animal concepts after learning was low, it is possible that
it would have been higher had the paradigm permitted
more time for consolidation of the new knowledge, such
as time for intervening sleep [Stickgold, 2005]. But the
important finding was that the increase in accuracy after
learning was statistically reliable, reflecting the emergence
of the neural representation of the learned feature knowl-
edge. Furthermore, animals that were described in similar
terms with respect to a feature type became neurally more
similar to each other within the brain regions that encode
that feature, demonstrating a close correspondence
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between the neural changes and the specific information
that was taught.

These results thus constitute a first step in documenting
how a simple addition to the knowledge about a concept
can selectively change one part of the neural representa-
tion of that concept. Moreover, the change in one part of a

neural representation that was brought about by instruc-
tion remained intact after an addition to the concept
knowledge (pertaining to a different feature) had been
made. In this way, the growth of the neural representation
of an individual novel animal concept was monitored
across successive stages of feature learning.

Figure 6.

Activation commonality between learning and thinking about a

feature. There was a commonality of locations between (A) the

a priori ROIs (habitat, left) used in the analysis of the thinking

trial data and (B) the activation clusters of the instruction trials.

The table above contains information about the activation clus-

ters in B. Rendering was performed on an MNI template brain

using the 3D medical imaging software MRIcroGL (Rorden and

Brett, 2000). L: left; R: right; ROI: region of interest; MNI: Mon-

treal Neurological Institute template.
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Although the reported results focused on the representa-
tion of new knowledge as it was manifested during the
thinking trials (when participants thought about the ani-
mals concepts), there was also evidence that participants
processed information about the feature that was being
taught during the instruction periods. Specifically, activa-
tion levels during instruction about a feature were ele-
vated precisely in those brain regions that were here
confirmed to encode the acquired knowledge about that
feature. These were the same regions that showed
increased activation in the thinking trials after instruction.
These results offer convergent evidence for the
conclusions.

Collectively, the results show that before instruction
about a feature, there were no stored representations of
the new feature knowledge; and after instruction, the fea-
ture information had been acquired and stored in the criti-
cal brain regions. The activation patterns in the regions
that encode the semantic information that was taught (hab-
itat and diet) changed, reflecting the specific new concept
knowledge. This study provides a novel form of evidence
(i.e., the emergence of new multivoxel representations)
that newly acquired concept knowledge comes to reside in
brain regions previously shown to underlie a particular
type of knowledge [for a review of theories of semantic
representation in the brain see Meteyard et al., 2010 and
Kiefer and Pulverm€uller, 2012]. Furthermore, this study
provides a foundation for brain research to trace how a
new concept makes its way from the words and graphics
used to teach it, to a neural representation of that concept
in a learner’s brain.

Monitoring the developmental trajectory of the neural
representation of a learned concept may constitute a
method for investigating this transduction process. For
example, changes in the anatomical location and particular
configuration of the activation pattern underlying a new
concept could be tracked as learners deepen their under-
standing of the concept. A learner could be scanned after
each exposure to an unchanging concept; or, as in the cur-
rent study, a concept could be built up over time as differ-
ent features of that concept are taught. In either case, a
characterization of each stage of the learner’s understand-
ing of the concept would be related to its corresponding
neural representation, which could reveal how and why
the brain activation is reconfigured with learning.

Monitoring the growth of a new neural knowledge rep-
resentation may also complement methods that investigate
the structure of existing knowledge. It may eventually be
possible to characterize the transition from newly learned
to old knowledge in terms of its degree of usage, related-
ness to other concepts, elapsed time, or other properties
yet to be discovered. It may also be possible to use an
analogous approach to characterize the decline of knowl-
edge (i.e., forgetting) in terms of similar properties. Fur-
thermore, characterizations of pathological declines of
knowledge (e.g., frontotemporal dementia) may be amena-
ble to this approach.

Several previous studies have demonstrated structural
brain changes that accompanied learning. For example, a
longitudinal study using diffusion tensor imaging showed
that instruction-based improvements in reading ability
changed the structural integrity of the cortical white mat-
ter in children with poor reading skills [Keller and Just,
2009]. In that case, the amount of change in white matter
was correlated with the amount of change in reading skill.
Several other studies have reported changes in grey matter
morphology as a result of learning (see Fields, 2011, for a
review of learning-induced structural changes in grey and
white matter). For example, an MRI voxel-based morpho-
metric comparison of gray matter before and after learning
to juggle revealed structural changes in left posterior intra-
parietal sulcus, a brain area that underlies the ability to
track moving objects [Draganski et al., 2004]. The new
results here complement this body of research by docu-
menting a change in brain function (activation patterns)
accompanying the emergence of new conceptual knowl-
edge, versus the enhancement of an intellectual skill (read-
ing) or motor skill (juggling). It may soon become possible
to measure activation-related changes in knowledge repre-
sentation simultaneously with gray and white matter
changes, in conjunction with various types of knowledge
acquisition.

The findings of the current study may foreshadow a
capability to apply brain imaging and multivoxel pattern
analyses to assess the progress in learning a complicated
concept—such as that of a high-school physics lesson—by
monitoring the changes in the concept’s neural representa-
tion as new features or aspects of the concept are learned.
Furthermore, real-time feedback throughout learning could
be administered, based on brain activity in earlier portions
of learning a concept’s features, to guide the ensuing por-
tions of learning. A recent fMRI study in which real-time
measurement of brain activation identified mental states
that were either “prepared” or “unprepared” for encoding
a new stimulus, lends credence to this possibility [Yoo
et al., 2012]. Recognition memory for the stimulus was
higher in the case of the prepared brain state condition,
demonstrating that brain activation measures could be
used to identify when instruction should be administered
(versus when it should not be), thus increasing the effi-
ciency of the learning. Multivoxel pattern analyses could
be used to diagnose which aspects of a concept a student
misunderstands (or lacks), in a manner that might be
more fundamental and accurate than traditional test-based
assessment. The ability to track the growth of a neural
knowledge representation speaks to the foundation of cog-
nitive neuroscience research, which seeks to understand
the neural basis of knowledge acquisition.

Future study is needed to determine how the multivoxel
representational pattern of a recently acquired concept
changes with further increments in concept knowledge. In
the current study, retention of the neural representation of
the first-taught feature was confirmed by the persistence
of the multivoxel pattern classification accuracy over time.
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But in other situations, the accumulation of concept knowl-
edge need not be additive: a newly added feature could
potentially modify a previous feature representation or oth-
erwise modify the entirety of the concept representation. It
may be fruitful to apply the current techniques to the study
of different types of concept growth in future research.

Research in these directions and others will add to an
emerging understanding of the growth of neural knowledge
representations. This understanding could help integrate
two fundamental dimensions of human cognition—namely
knowledge representation and concept learning—and also
perhaps enable the application of neuroscientific results to
improvements in instructional design.
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