Mind Reading and Mind Control Technologies Are Coming

By Michael Gazzaniga

Mind-reading technologies can probe the secrets of our thought processes. For many people, these developments are the stuff of science fiction. Yet, the technologies are being developed today, and even now in a few cases, are already in use.

In the past, psychologists have relied on the introspection of people, and on the ambiguous memories of witnesses or people whose minds were in a hypnotic state, to understand how people's minds work. The advent of brain imaging and recording methods allow the thoughts of people to be observed at the moment they happen. The words you're typing, for instance, are visible in your brain. The same is true for all of your thoughts and emotional expressions.

There are two main types of brain-scanning methods: functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). Functional magnetic resonance imaging involves scanning the brain in its entirety. Positron emission tomography involves introducing into the body a radioactive substance that localizes itself in specific areas of the brain. To date, brain-scanning methods have focused on the region of the brain that governs the production of speech.

There are two primary approaches to brain-scanning methods: functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). Functional magnetic resonance imaging involves scanning the brain in its entirety. Positron emission tomography involves introducing a radioactive substance into the body that localizes itself in specific areas of the brain. To date, brain-scanning methods have focused on the region of the brain that governs the production of speech.

There are two primary approaches to brain-scanning methods: functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). Functional magnetic resonance imaging involves scanning the brain in its entirety. Positron emission tomography involves introducing a radioactive substance into the body that localizes itself in specific areas of the brain. To date, brain-scanning methods have focused on the region of the brain that governs the production of speech.

There are two primary approaches to brain-scanning methods: functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). Functional magnetic resonance imaging involves scanning the brain in its entirety. Positron emission tomography involves introducing a radioactive substance into the body that localizes itself in specific areas of the brain. To date, brain-scanning methods have focused on the region of the brain that governs the production of speech.

There are two primary approaches to brain-scanning methods: functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). Functional magnetic resonance imaging involves scanning the brain in its entirety. Positron emission tomography involves introducing a radioactive substance into the body that localizes itself in specific areas of the brain. To date, brain-scanning methods have focused on the region of the brain that governs the production of speech.

There are two primary approaches to brain-scanning methods: functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). Functional magnetic resonance imaging involves scanning the brain in its entirety. Positron emission tomography involves introducing a radioactive substance into the body that localizes itself in specific areas of the brain. To date, brain-scanning methods have focused on the region of the brain that governs the production of speech.

There are two primary approaches to brain-scanning methods: functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). Functional magnetic resonance imaging involves scanning the brain in its entirety. Positron emission tomography involves introducing a radioactive substance into the body that localizes itself in specific areas of the brain. To date, brain-scanning methods have focused on the region of the brain that governs the production of speech.

There are two primary approaches to brain-scanning methods: functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). Functional magnetic resonance imaging involves scanning the brain in its entirety. Positron emission tomography involves introducing a radioactive substance into the body that localizes itself in specific areas of the brain. To date, brain-scanning methods have focused on the region of the brain that governs the production of speech.

There are two primary approaches to brain-scanning methods: functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). Functional magnetic resonance imaging involves scanning the brain in its entirety. Positron emission tomography involves introducing a radioactive substance into the body that localizes itself in specific areas of the brain. To date, brain-scanning methods have focused on the region of the brain that governs the production of speech.

There are two primary approaches to brain-scanning methods: functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). Functional magnetic resonance imaging involves scanning the brain in its entirety. Positron emission tomography involves introducing a radioactive substance into the body that localizes itself in specific areas of the brain. To date, brain-scanning methods have focused on the region of the brain that governs the production of speech.

There are two primary approaches to brain-scanning methods: functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). Functional magnetic resonance imaging involves scanning the brain in its entirety. Positron emission tomography involves introducing a radioactive substance into the body that localizes itself in specific areas of the brain. To date, brain-scanning methods have focused on the region of the brain that governs the production of speech.

There are two primary approaches to brain-scanning methods: functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). Functional magnetic resonance imaging involves scanning the brain in its entirety. Positron emission tomography involves introducing a radioactive substance into the body that localizes itself in specific areas of the brain. To date, brain-scanning methods have focused on the region of the brain that governs the production of speech.