
3 Symbolic Aspects of Knowledge Representation

4CAPS is a hybrid architecture, encompassing both symbolic and connectionist
processing styles. This chapter describes the symbolic aspects of 4CAPS knowledge
representations; the connectionist aspects are covered in the next chapter.

The symbolic aspects of 4CAPS follow from its status as a production system interpreter.
As such, knowledge is represented in two ways in 4CAPS. The transient bits of
information that characterize the contents of working memory during processing are
encoded as declarative memory elements. Long-term memory is viewed as an associative
memory that incrementally transforms working memory over time. Knowledge in long-
term memory is encoded as productions.

4CAPS differs from other production system interpreter-based architectures in two major
ways.

First, it is neoclassical, to use Anderson’s (1983) terminology, in not positing a third
memory system. That is, the architecture is neutral on whether long-term declarative
knowledge is encoded in a separate store or whether such knowledge is encoded
procedurally. Techniques for representing long-term declarative knowledge in 4CAPS are
discussed in a later chapter.

The second difference between 4CAPS and similar architectures is the power of its
knowledge representations. Conventional production system interpreters provide
relatively impoverished declarative and procedural representations. Declarative memory
elements in 4CAPS are based on the Common Lisp object system, and can thus be used
to build the kinds of abstractions that programmers familiar with object-oriented
programming languages will want to build. Similarly, productions are based on Common
Lisp methods/functions, and thus inherit great power and flexibility.

3.1 Declarative Memory

Working memory contains storage and processing aspects. The storage function of
working memory is to maintain a representation of the current processing state. This state
is composed of a set of declarative memory elements.

Each declarative memory element belongs to a particular declarative memory class. The
class of a declarative memory element governs its internal structure and the operations
which it admits. 4CAPS defines a single declarative memory class, base-wme. 4CAPS
models can define additional declarative memory element classes. For example, it is
common to define a goal class so that goals can be created in working memory.

Each declarative memory elements contains a number of named components, called slots,
which can have a single value. Other symbolic architectures refer to slots as attributes,
while connectionists prefer the terms features or microfeatures. Object-oriented
programming languages sometimes use the term instance variables for the same concept.

The class of a declarative memory element dictates the slots it contains. For example, all
declarative memory elements of class base-wme contain the slots id and act. The
value of a slot can be nearly anything: a number, a symbol, a string, another declarative
memory element, etc.

The printed representation of a declarative memory element includes its class and various
slot/value pairs between parenthetical delimiters: (class :slot1 value1 :slot2 value2 …).
For example, a declarative memory element of class base-wme might print as: (base-
wme :id 21 :act 1.0).

Declarative memory elements support certain operations. Minimally, the values of all
slots may be accessed. The definition of additional operations on declarative memory
elements is discussed in a subsequent chapter.

3.1.1 Declarative Memory Classes

3.1.1.1 Basic Class Definition

The defwmclass command is used to define a declarative memory class. For example:

(defwmclass addition-fact () ; the class of additive facts
 operand1 ; the first addend
 operand2 ; the second addend
 sum) ; the sum of the two addends

This command defines a new declarative class addition-fact. Following the name
of the new class is a list of existing declarative memory classes from which it inherits. If
class A inherits from class B, then elements of class A automatically contain all slots of
class B in addition to those slots specified in class A’s definition. In the example above,
addition-fact appears to inherit from no other declarative classes. In fact, this is not
true. All declarative memory classes automatically inherit from the base-wme class.
That is, the class definition above can be written as:

(defwmclass addition-fact (base-wme) ...)
The classes from which a class inherits are called its direct superclasses, or alternatively,
parent classes. Finally, a list of slots possessed by the new class are listed. Thus
addition-fact contains five slots: id and act are inherited from its direct
superclass base-wme, and operand1, operand2, and sum are unique to it.

(Note that the bits of text following the “;” at the end each line of the class definition are
comments, text meant for consumption by human programmers. They document the
purpose of each aspect of the definition. They are, of course, optional. It is a good idea to
comment one’s code to facilitate its comprehension by other programmers in the future
(and the author as well).)

3.1.1.2 Inheritance

The general benefit of declarative memory classes and inheritance can be seen if we
consider the task of writing a model of arithmetic performance. The model can depend on
a storehouse of general arithmetic knowledge, which we can capture with the definition:

(defwmclass arithmetic-fact ()
 operand1
 operand2)

This class of arithmetic knowledge can then be specialized for the four primary
arithmetic operators:

(defwmclass addition-fact (arithmetic-fact)
 sum)
(defwmclass subtraction-fact (arithmetic-fact)
 difference)
(defwmclass multiplication-fact (arithmetic-fact)
 product)
(defwmclass division-fact (arithmetic-fact)
 ratio)

This refactored scheme makes clear that addition-fact is a subclass of (or just isa)
arithmetic-fact, and that arithmetic-fact is a subclass of base-wme.

3.1.1.3 Default Slot Values

When a declarative memory element is created, it will contain all of the slots specified in
the class definition and the definitions of the class’s superclasses. The initial values of
these slots will be NIL, which is to say that they will have no value by default. It is
possible to specify non-NIL default values for slots. This is done by including the slot in
a list whose second value is the desired default value. Extending the example above:

(defwmclass arithmetic-fact ()
 operand1
 operand2
 (operator ‘?))

Arithmetic-fact contains a new slot, operator, which has a default value of ‘?
(instead of NIL).

3.1.1.4 Overriding the Default Slot Values of Inherited Slots

Because addition-fact inherits from arithmetic-fact, and because the default
value of the operator slot in arithmetic-fact is ‘?, the same will be true for
addition-fact. But this is not desirable. We would like the ability to override the
default values of slots inherited from superclasses. This can be done using the following
syntax:

(defwmclass addition-fact (arithmetic-fact)
 sum
 :default-initargs :operator ‘+)

This definition states that while addition-fact inherits from arithmetic-fact,
its default value for the inherited operator slot is ‘+, not ‘?. Following this template, we
can redefine the remaining subclasses of arithmetic-fact:

(defwmclass subtraction-fact (arithmetic-fact)
 difference

:default-initargs :operator ‘-)
(defwmclass multiplication-fact (arithmetic-fact)
 product

:default-initargs :operator ‘*)
(defwmclass division-fact (arithmetic-fact)
 ratio

:default-initargs :operator ‘/)

3.1.1.5 A Top-Level Command on Declarative Memory Classes

Only one command, defwmclass, is used to define declarative memory element
classes. Its formal syntax is:

(defwmclass class ({superclass}*)
 {slot | (slot default-value)}*
 {:default-initargs {inherited-slot overriding-default-value}*})

The name of the new class is class. Its direct superclasses are the zero or more superclass
names listed. All new classes automatically inherit from base-wme. Following the list
of superclasses are the slot specifications for the slots unique to class; there may be zero
or more of these. A slot specification is either a slot or a list of two items, a slot and a
default-value. If :default-initargs appears anywhere in the list of slot
specifications, then it is followed by an even number of default overrides. A default
override consists of an inherited-slot followed by an overriding-default-value.

3.1.2 Declarative Memory Elements

Recall that this chapter covers the symbolic aspects of 4CAPS. From this perspective,
declarative memory elements can be discretely added and deleted from working memory.
This hard distinction will be softened in the next chapter, which covers the connectionist
properties of 4CAPS. There, the gradual excitation and inhibition of declarative memory
elements will be described.

3.1.2.1 Adding Declarative Memory Elements

Once a declarative memory class has been defined, it can be used to create declarative
memory elements. This is done via the add command. For example:

(add (addition-fact :operand1 5 ; 5+7=12
 :operand2 7
 :sum 12)
 1.0)

The add command takes one or two arguments.

The first argument must be a template for a declarative memory element. Templates
resemble the format in which 4CAPS prints declarative memory elements. They are
delimited by opening and closing parentheses. The first element of the template is the
class of the declarative element being created. In the example above, this is an
addition-fact. We know from the definition of this declarative element class that it
contains six slots: id and act inherited from base-wme; operand1, operand2, and
operator inherited from arithmetic-fact; and sum, which it possesses uniquely.
4CAPS automatically defines the id value; the act value is handled separately, as
described below. The definition of addition-fact automatically provides the desired
operator value of ‘+. All that remains is to define the two operands and sum
expressed by this declarative memory element. This is done following the class. For each
slot and value to be defined, the slot is written with a preceding colon. This is called a

keyword in Common Lisp and thus 4CAPS. It signifies that the slot is not a value, but
names an argument of some sort, which follows immediately. The desired value of the
slot follows the keyword. Thus, the above command creates an addition-fact with
user-defined values of 5 for the operand1 slot, 7 for the operand2 slot, and 12 for
the sum slot.

The second argument to add is optional. It specifies the desired value of the act slot of
the newly-created declarative memory element. If no second argument is given, it
defaults to 1.0. Additional properties of element activations are described in subsequent
chapters.

3.1.2.2 Listing Declarative Memory Elements

The set of declarative memory elements defines the contents of working memory. These
can be inspected using the wm command. The following is a sample interaction with
4CAPS that follows the addition of the addition-fact shown above with the
addition of a second declarative memory element and a listing of working memory:

> (add (subtraction-fact
 :operand1 5
 :operand2 7
 :difference -2)
 1.0)

> (wm)
===
all modules

1.00: (addition-fact :id 1 :operand1 5 :operand2 7 :operator +

:sum 12)
1.00: (subtraction-fact :id 2 :operand1 5 :operand2 7

:operator - :difference -2)
===
>

The wm command prints each declarative memory element in working memory in
template form. That is, between parenthetical delimiters is first the class and then each
slot in keyword form followed by its value.

There are three things to notice about the sample output above. First, the value of the act
slot is fronted for each declarative memory element. This vagary of activation values is
covered in the next chapter. Second, 4CAPS did in fact automatically assign values to the
id slots and defaulted the values of the operator slots as mandated by the class
definitions. The final thing to notice is that the header specifies that this is the working
memory of “all modules.” Models comprised of multiple modules are covered in a
subsequent chapter.

The wm optionally takes one or more arguments. These are classes by which the listing of
working memory should be filtered. For example:

> (wm addition-fact)
===

all modules filtered by addition-fact

1.00: (addition-fact :id 1 :operand1 5 :operand2 7

:operator + :sum 12)
===
> (wm subtraction-fact)
===
all modules filtered by subtraction-fact

1.00: (subtraction-fact :id 2 :operand1 5 :operand2 7 :operator –

:difference -2)
===
>

Providing filter classes allows the inspection of just those declarative memory elements
of interest, which is useful when the contents of working memory swell. Note that the
header of each listing lists the classes by which working memory was filtered. When no
filter classes are provided, it as if base-wme is used; because all declarative memory
elements inherit from base-wme, they are considered members of this class, and are
thus printed.

It is left as an exercise to the reader to guess (and verify!) the results of typing the (wm
arithmetic-fact) and (wm multiplication-fact) commands at this point.

3.1.2.3 Deleting Declarative Memory Elements

There is a facility for deleting declarative memory elements from working memory: the
del command. The del command takes a single argument, the declarative memory
element to be deleted. The problem arises as to how one “grabs hold” of a declarative
memory element in working memory to “pass” to the del command for deletion. This
task is performed by the get-wme command. For example:

> (get-wme 1)
(addition-fact :id 1 :act 1.00 :operand1 5 :operand2 7

:operator + :sum 12)
> (get-wme 2)
(subtraction-fact :id 2 :act 1.00 :operand1 5 :operand2 7

:operator - :difference -2)
>

The get-wme command takes a single argument, a number. It returns the declarative
memory element with the same numeric value for its id slot, or NIL if no such element
exists. This is the first example of the id slot’s usefulness as a reference or alias for
declarative memory elements.

The following del command makes use of the get-wme command to delete the
subtraction-fact present in working memory:

> (del (get-wme 2))

> (wm)
===
all modules

1.00: (addition-fact :id 1 :operand1 5 :operand2 7
:operator + :sum 12)

===
>

3.1.2.4 Top-Level Commands for Declarative Memory Elements

The add command creates a new declarative memory element in working memory. Its
formal syntax is:

(add (class {:slot value}*) [activation-level])
The class of the new declarative memory element is class. Following the class are an
even number of items (possibly zero). For each pair, the first is a slot expressed in
keyword form, i.e., with a preceding colon. The second is the value to be initially
assigned to slot. The class and slot-values are delimited by parentheses; this entire form
serves as a template for the to-be-created declarative memory element. Following the
template is optionally an activation-level, number indicating the desired initial activation
level of the declarative memory element.

The wm command lists a subset of the declarative memory elements that comprise
working memory. Its formal syntax is:

(wm {class}*)
This command takes zero or more classes as arguments. If none are supplied, it is as if a
single argument, base-wme, was specified. Every declarative memory element in
working memory is considered. If the class of the element is one of the supplied classes
or a subclass of one of the supplied classes, then the element is printed. Thus, if no
explicit class argument is given and the implicit base-wme is used, then the entire
contents of working memory will be printed because each declarative memory element is
a subclass of this class. When a declarative memory element is printed by the wm
command, its activation is fronted (i.e., printed first).

The get-wme command returns the declarative memory element with the same value for
its id slot as the single argument given to the command. Its formal syntax is:

(get-wme id-number)
If no matching declarative memory element exists, NIL is returned. This command is
useful for retrieving declarative memory elements needed as arguments for other
commands.

The del command deletes from working memory the declarative memory element
supplied as its sole argument. Its formal syntax is:

(del declarative-memory-element)
It is an error to supply anything but a declarative memory element as an argument to this
command. It is often useful to embed a call to get-wme in del commands to “get hold
of” the declarative-memory-element to be deleted.

